Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

Gas Slit Camera (GSC) onboard MAXI on ISS

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

The Gas Slit Camera (GSC) is an X-ray instrument on the MAXI (Monitor of All-sky X-ray Image) mission on the International Space Station. It is designed to scan the entire sky every 92-minute orbital period in the 2–30 keV band and to achieve the highest sensitivity among the X-ray all-sky monitors ever flown so far. The GSC employs large-area position-sensitive proportional counters with the total detector area of 5350 cm$^2$. The on-board data processor has functions to format telemetry data as well as to control the high voltage of the proportional counters to protect them from the particle irradiation. The paper describes the instruments, on-board data processing, telemetry data formats, and performance specifications expected from the ground calibration tests.

Related URLs:

Continue Reading

Discovery of a Cyclotron Resonance Feature in the X-ray Spectrum of GX 304-1 with RXTE and Suzaku during Outbursts Detected by MAXI in 2010

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

We report the discovery of a cyclotron resonance scattering feature (CRSF) in the X-ray spectrum of GX 304-1, obtained by RXTE and Suzaku during major outbursts detected by MAXI in 2010. The peak intensity in August reached 600 mCrab in the 2-20 keV band, which is the highest ever observed from this source. The RXTE observations on more than twenty occasions and one Suzaku observation revealed a spectral absorption feature at around 54 keV, which is the first CRSF detection from this source. The estimated strength of surface magnetic field, 4.7×1012 G, is one of the highest among binary X-ray pulsars from which CRSFs have ever been detected. The RXTE spectra taken during the August outburst also suggest that the CRSF energy changed over 50-54 keV, possibly in a positive correlation with the X-ray flux. The behavior is qualitatively similar to that observed from Her X-1 on long time scales, or from A 0535+26, but different from the negative correlation observed from 4U 0115+63 and X 0331+53.

Related URLs:

Continue Reading

Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

Using a combination of satellite sensors, field measurements and satellite-uplinked in situ observing stations, we examine the evolution of several large icebergs drifting east of the Antarctic Peninsula towards South Georgia Island. Three styles of calving are observed during drift: 'rift calvings', 'edge wasting' and 'rapid disintegration'. Rift calvings exploit large pre-existing fractures generated in the shelf environment and can occur at any stage of drift. Edge wasting is calving of the iceberg perimeter by numerous small edge-parallel, sliver-shaped icebergs, preserving the general shape of the main iceberg as it shrinks. This process is observed only in areas north of the sea-ice edge. Rapid disintegration, where numerous small calvings occur in rapid succession, is consistently associated with indications of surface melt saturation (surface lakes, firn-pit ponding). Freeboard measurements by ICESat indicate substantial increases in ice-thinning rates north of the sea-ice edge (from <10ma−1 to >30ma−1), but surface densification is shown to be an important correction (>2m freeboard loss before the firn saturates). Edge wasting of icebergs in 'warm' surface water (sea-ice-free, >−1.8 °C) implies a mechanism based on waterline erosion. Rapid disintegration ('Larsen B-style' break-up) is likely due to the effects of surface or saturated-firn water acting on pre-existing crevasses, or on wave- or tidally induced fractures. Changes in microwave backscatter of iceberg firn as icebergs drift into warmer climate and experience increased surface melt suggest a means of predicting when floating ice plates are evolving towards disintegration.

Related URLs:

Continue Reading

Operational retrieval algorithms for JEM/SMILES level 2 data processing system

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

To measure the thermal emission from stratospheric minor species with high sensitivity, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS) carries 4 K cooled Superconductor–Insulator–Superconductor (SIS) mixers. The major feature of the SMILES is its high-sensitive measurement ability with low system noise temperature less than 700 K. As a part of the ground system for the SMILES, a level 2 data processing system (DPS-L2) has been developed. It retrieves the density distributions of the target species from calibrated spectra in near-real-time. The retrieval process consists of two parts: the forward model, which computes radiative transfer, and the inverse model, which deduces atmospheric states. Since the forward model must provide the most accurate basis for results and be implemented under limited computing resources, the forward model algorithm for an operational system has to be accurate and fast. Hence, the algorithm is improved (1) by designing accurate instrument functions such as the instrumental field of view (FOV), sideband rejection ratio of sideband separator, and spectral responses of acousto-optic spectrometer (AOS) and (2) by optimizing radiative transfer calculation. This paper presents the development of the DPS-L2 along with the details on its algorithm and the algorithm performance. The accuracy of this algorithm is better than 1%, and the processing time for single-scan spectra is less than 1 min with eight parallel processings using a 3.16-GHz Quad-Core Intel Xeon processor. Thus, this algorithm is suitable for the SMILES measurement.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0022407309002167

Continue Reading

Capability for ozone high-precision retrieval on JEM/SMILES observation

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

We estimate the capability of ozone (O3) retrieval with the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) instrument attached to the Exposed Facility of the Japanese Experiment Module (JEM) on the International Space Station (ISS). SMILES carries a 4-K mechanical refrigerator to cool superconducting devices in space. Since SMILES has high sensitivity thanks to the superconducting receiver, it is expected that SMILES has ability to retrieve O3 profiles more precisely than the previous millimeter–submillimeter limb measurements from satellites. We examine the random error and the systematic error of O3 vertical profiles based on the launch-ready retrieval algorithm developed for SMILES. The best random error with single-scan spectra is 0.4% at an altitude of 30 km with 3 km vertical resolution in the mid-latitudes. The random error is better than 5% in the altitude region from 15 to 70 km in the nighttime and from 15 to 55 km in the daytime with 3 km vertical resolution in the mid-latitudes. By averaging ten profiles, the random error is improved to 1% at 70 km altitude in the nighttime and to 5% in the daytime. Using SMILES, we expect to determine the diurnal variation of O3 vertical profiles with high precision in the upper stratosphere. Finally, the retrieval capability of O3 in the lower stratosphere is estimated. When retrieving spectral data using two receiver bands (624.32–626.32 GHz and 649.12–650.32 GHz) the random error above 13 km in the mid-latitudes and above 15 km in the tropics is expected to be better than 5% under clear sky conditions.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117711003127

Continue Reading

The Solar Irradiance Spectrum at Solar Activity Minimum Between Solar Cycles 23 and 24

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

On 7 February 2008, the SOLAR payload was placed onboard the International Space Station. It is composed of three instruments, two spectrometers and a radiometer. The two spectrometers allow us to cover the 16 – 2900 nm spectral range. In this article, we first briefly present the instrumentation, its calibration and its performance in orbit. Second, the solar spectrum measured during the transition between Solar Cycles 23 to 24 at the time of the minimum is shown and compared with other data sets. Its accuracy is estimated as a function of wavelength and the solar atmosphere brightness-temperature is calculated and compared with those derived from two theoretical models.

Related URLs:
http://dx.doi.org/10.1007/s11207-013-0461-y
http://link.springer.com/article/10.1007%2Fs11207-013-0461-y

Continue Reading

SOLAR/SOLSPEC: Scientific Objectives, Instrument Performance and Its Absolute Calibration Using a Blackbody as Primary Standard Source

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

SOLAR is a set of three solar instruments measuring the total and spectral absolute irradiance from 16 nm to 3080 nm for solar, atmospheric and climatology physics. It is an external payload for the COLUMBUS laboratory launched on 7 February 2008. The mission’s primary objective is the measurement of the solar irradiance with the highest possible accuracy, and its variability using the following instruments: SOL-ACES (SOLar Auto-Calibrating EUV/UV Spectrophotometers) consists of four grazing incidence planar gratings measuring from 16 nm to 220 nm; SOLSPEC (SOLar SPECtrum) consists of three double gratings spectrometers, covering the range 165 nm to 3080 nm; and SOVIM (SOlar Variability Irradiance Monitor) is combining two types of absolute radiometers and three-channel filter – radiometers. SOLSPEC and SOL-ACES have been calibrated by primary standard radiation sources of the Physikalisch-Technische Bundesanstalt (PTB). Below we describe SOLSPEC, and its performance.

Related URLs:
http://dx.doi.org/10.1007/s11207-009-9361-6

Continue Reading

Analysis of Different Solar Spectral Irradiance Reconstructions and Their Impact on Solar Heating Rates

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

Proper numerical simulation of the Earth’s climate change requires reliable knowledge of solar irradiance and its variability on different time scales, as well as the wavelength dependence of this variability. As new measurements of the solar spectral irradiance have become available, so too have new reconstructions of historical solar irradiance variations, based on different approaches. However, these various solar spectral irradiance reconstructions have not yet been compared in detail to quantify differences in their absolute values, variability, and implications for climate and atmospheric studies. In this paper we quantitatively compare five different reconstructions of solar spectral irradiance changes during the past four centuries, in order to document and analyze their differences. The impact on atmosphere and climate studies is discussed in terms of the calculation of short wave solar heating rates.

Related URLs:
http://dx.doi.org/10.1007/s11207-013-0381-x

Continue Reading

Solid-State Slit Camera (SSC) Aboard MAXI

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

The Solid-state Slit Camera (SSC) is an X-ray camera aboard the MAXI mission of the International Space Station. Two sets of SSC sensors view the X-ray sky using charge-coupled devices (CCDs) in the 0.5–12 keV band. The total area for X-ray detection is about 200 cm2, which is the largest among the missions of X-ray astronomy. The energy resolution at the CCD temperature of −70∘C is 145 eV in full width at the half maximum (FWHM) at 5.9 keV, and the field of view is 1∘.5 (FWHM) × 90∘ for each sensor. The SSC could make a whole-sky image with the energy resolution good enough to resolve line emissions, and monitor the whole-sky at the energy band of < 2 keV for the first time in these decades.

Related URLs:
http://pasj.oxfordjournals.org/content/63/2/397.abstract

Continue Reading

Revisit of Local X-Ray Luminosity Function of Active Galactic Nuclei with the MAXI Extragalactic Survey

by cfynanon 9 June 2015in Earth Science and Remote Sensing No comment

We constructed a new X-ray (2–10 keV) luminosity function of Compton-thin active galactic nuclei (AGNs) in the local universe, using the first MAXI/GSC source catalog surveyed in the 4–10 keV band. The sample consists of 37 non-blazar AGNs at z = 0.002–0.2, whose identification is highly ( > 97%) complete. We confirmed the trend that the fraction of absorbed AGNs with NH > 10 22 cm −2 rapidly decreases against the luminosity ( LX ), from 0.73 ± 0.10 at LX = 10 42−43.5 erg s −1 to 0.12 ± 0.08 at LX = 10 43.5−45.5 erg s −1 . The obtained luminosity function was well-fitted with a smoothly connected double power-law model whose indices are γ1 = 0.84 (fixed) and γ2 = 2.0 ± 0.2 below and above the break luminosity, L∗ = 10 43.3±0.4 erg s −1 , respectively. While the result of the MAXI/GSC agrees well with that of HEAO-1 at LX ≳ 10 43.5 erg s −1 , it gives a larger number density at the lower luminosity range. A comparison between our luminosity function in the 2–10 keV band and that in the 14–195 keV band obtained from the Swift/BAT survey indicates that the averaged broad-band spectra in the 2–200 keV band should depend on the luminosity, approximated by Γ ∼ 1.7 for LX ≲ 10 44 erg s −1 , while Γ ∼ 2.0 for LX ≳ 10 44 erg s −1 . This trend was confirmed by the correlation between the luminosities in the 2–10 keV and 14–195 keV bands in our sample. We argue that there is no contradiction in the luminosity functions between above and below 10 keV once this effect is taken into account.

Related URLs:
http://pasj.oxfordjournals.org/content/63/sp3/S937.abstract

Continue Reading
  • «
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • …
  • 17
  • 18
  • 19
  • »

Researcher Interviews

No items found

Projects in Flight

  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS