Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Autonomous docking algorithm development and experimentation using the SPHERES testbed

Nolet, Simon, et al. (2004). "Autonomous docking algorithm development and experimentation using the SPHERES testbed." 5419: 1-15

The MIT Space Systems Laboratory (SSL) has developed a testbed for the testing of formation flight and autonomous docking algorithms in both 1-g and microgravity environments. The SPHERES testbed consists of multiple micro-satellites, or Spheres, which can autonomously control their position and attitude. The testbed can be operated on an air table in a 1-g laboratory environment, in NASA"s KC-135 reduced gravity research aircraft and inside the International Space Station (ISS). SPHERES launch to the ISS is currently manifested for May 19 2004 on Progress 14P. Various types of docking maneuvers, ranging from docking with a cooperative target to docking with a tumbling target, have been developed. The ultimate objective of this research is to integrate the different algorithms into one program that can assess the health status of the target vehicle, plan an optimal docking maneuver while accounting for the existing constraints and finally, execute that maneuver even in the presence of simulated failures. In this paper, results obtained to date on the ground based air table using the initial version of the program will be presented, as well as results obtained from microgravity experiments onboard the KC-135.

Related URLs:
http://dx.doi.org/10.1117/12.547430

Share this
0
0
0
Tags: Algorithm, Docking, Formation flight control, International Space Station, ISS, KC-135, Maneuvers, Microgravity, SPHERES, Synchronized Position Hold Engage Reorient Experiment Satellite, Technology demonstration, tumbling target, undocking