Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Comprehensive Study of the Influence of Altered Gravity on the Oxidative Burst of Mussel (Mytilus edulis) Hemocytes

Unruh, E., et al. (2015). "Comprehensive Study of the Influence of Altered Gravity on the Oxidative Burst of Mussel (Mytilus edulis) Hemocytes." Microgravity Science and Technology 28 3: 275-285

Microgravity induces alterations in the function- ing of immune cell; however, the underlying mechanisms have not yet been identified. In this study, hemocytes (blood cells) of the blue mussel Mytilus edulis were investigated under altered gravity conditions. The study was conducted on the ground in preparation for the BIOLAB TripleLux- B experiment, which will be performed on the International Space Station (ISS). On-line kinetic measurements of reac- tive oxygen species (ROS) production during the oxidative burst and thus cellular activity of isolated hemocytes were performed in a photomultiplier (PMT)-clinostat (simulated microgravity) and in the 1g operation mode of the clino- stat in hypergravity on the Short-Arm Human Centrifuge (SAHC) as well as during parabolic flights. In addition to studies with isolated hemocytes, the effect of altered gravity conditions on whole animals was investigated. For this pur- pose, whole mussels were exposed to hypergravity (1.8 g) on a multi-sample incubator centrifuge (MuSIC) or to simu- lated microgravity in a submersed clinostat. After exposure for 48 h, hemocytes were taken from the mussels and ROS production was measured under 1 g conditions. The results from the parabolic flights and clinostat studies indicate that mussel hemocytes respond to altered gravity in a fast and reversible manner. Hemocytes (after cryo-conservation)exposed to simulated microgravity (μ g), as well as fresh hemocytes from clinorotated animals, showed a decrease in ROS production. Measurements during a permanent exposure of hemocytes to hypergravity (SAHC) show a decrease in ROS production. Hemocytes of mussels mea- sured after the centrifugation of whole mussels did not show an influence to the ROS response at all. Hypergravity dur- ing parabolic flights led to a decrease but also to an increase in ROS production in isolated hemocytes, whereas the cen- trifugation of whole mussels did not influence the ROS response at all. This study is a good example how ground- based facility experiments can be used to prepare for an upcoming ISS experiment, in this case the TRIPLE LUX B experiment.

Related URLs:
http://link.springer.com/article/10.1007/s12217-015-9438-9

ISSN: 0938-0108 1875-0494

DOI: 10.1007/s12217-015-9438-9

Share this
0
0
0
Tags: blood cell, clam, Clinostat, Hypergravity, immune system, innate immunity, Macrophage, Microgravity, mollusc, parabolic flight, Phagocytosis, Reactive oxygen species, ROS