Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Formation control and reconfiguration through synthetic imaging formation flying testbed (SIFFT)

Mohan, S., et al. (2007). "Formation control and reconfiguration through synthetic imaging formation flying testbed (SIFFT)." 6687: 66871E-66871E-11

The objective of the Synthetic Imaging Formation Flying Testbed (SIFFT) is to develop and demonstrate algorithms for autonomous centimeter-level precision formation flying. Preliminary tests have been conducted on SIFFT at the Flat Floor facility at NASA's Marshall Space Flight Center (MSFC). The goal of the testing at MSFC was to demonstrate formation reconfiguration of three "apertures" by rotation and expansion. Results were very successful and demonstrate the ability to position and reconfigure separate apertures. The final configuration was with three satellites floating in an equilateral triangle. The two Follower satellites expand the formation with respect to the Master satellite, which executes a 10° rotation. Testing was performed successfully under various initial conditions: initial Follower rotation, initial Follower drift, and initial significant position error of each Follower. Results show roughly 10cm steady state error and ±5cm precision. Formation capturing technique, where satellites search for each other without prior knowledge of the position of the other satellites, were also developed and demonstrated both on the 2D flat table and in the 3D International Space Station environment. Future work includes using a minimum set of beacons for estimation and implementing a search algorithm so satellites can acquire each other from any initial orientation.

Related URLs:
http://dx.doi.org/10.1117/12.731123

Share this
0
0
0
Tags: Algorithm, Apertures, autonomous, Flat Floor, Flight maneuvers, Formation flight control, Ground-based, Satellite, Satellite formation, SIFFT, Simulate Microgravity, Simulation, Synthetic Imaging Formation Flying Testbed, Technology demonstration