Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

In vitro osteogenic differentiation of rat mesenchymal stem cells in a microgravity bioreactor

Koc, A., et al. (2008). "In vitro osteogenic differentiation of rat mesenchymal stem cells in a microgravity bioreactor." Journal of Bioactive and Compatible Polymers 23 3: 244-261

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the ability to differentiate into osteoblasts, chondroblasts, myocytes, and adipocytes. They have potential for bone tissue engineering by the utilization of in vitro expanded cells with osteogenic capacity and their delivery to the appropriate sites via biomaterial scaffolds. The objective was to evaluate the potential of rat bone marrow MSCs to form 3D bone-like tissue by the use of mineralized poly(DL-lactic-co-glycolic acid) (PLGA) foam and osteoinductive medium under rotating culture conditions. PLGA foams were prepared by solvent casting and particulate leaching, then mineralized by incubating in simulated body fluid. MSCs isolated from the bone marrow of young Wistar rats were expanded and seeded on the mineralized scaffolds. The cell-polymer constructs were then cultured in a slow turning lateral vessel-type rotating bioreactor for 4 weeks under the effect of osteogenic inducers, b-glycerophosphate, ascorbic acid and dexamethasone. Mineralization was evaluated using FT-IR and increases in dry mass; morphology changes of the mineralized foams and cell adhesion was characterized by SEM; cell viability was monitored by MTT (3-(4,5-dimethylthia-zol-2-yl-2,5-diphenyl tetrazolium bromide). Osteogenic differentiation was determined by using immunohistochemistry (anti-Osteopontin). Results indicate the feasibility of bone tissue engineering with MSCs and mineralized PLGA scaffolds supporting cell adhesion, viability and osteogenic differentiation properties of cells in hybrid structures under appropriate bioreactor conditions.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed8&AN=2008202967
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1177%2F0883911508091828&issn=0883-9115&isbn=&volume=23&issue=3&spage=244&pages=244-261&date=2008&title=Journal+of+Bioactive+and+Compatible+Polymers&atitle=In+vitro+osteogenic+differentiation+of+rat+mesenchymal+stem+cells+in+a+microgravity+bioreactor&aulast=Koc&pid=%3Cauthor%3EKoc+A.%3C%2Fauthor%3E&%3CAN%3E2008202967%3C%2FAN%3E

DOI: 10.1177/0883911508091828

Share this
0
0
0
Tags: *Osteoblasts, bioreactor, Bone tissue engineering, Differentiation, Immunohistochemical, mesenchymal stem cells, Myocytes, Osteogenic, progenitor, Rat, rodent, Simulated microgravity