Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station

Zwart, S. R., et al. (2013). "Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station." Am J Clin Nutr 98 1: 217-23

BACKGROUND: Increases in stored iron and dietary intake of iron during space flight have raised concern about the risk of excess iron and oxidative damage, particularly in bone. OBJECTIVES: The objectives of this study were to perform a comprehensive assessment of iron status in men and women before, during, and after long-duration space flight and to quantify the association of iron status with oxidative damage and bone loss. DESIGN: Fasting blood and 24-h urine samples were collected from 23 crew members before, during, and after missions lasting 50 to 247 d to the International Space Station. RESULTS: Serum ferritin and body iron increased early in flight, and transferrin and transferrin receptors decreased later, which indicated that early increases in body iron stores occurred through the mobilization of iron to storage tissues. Acute phase proteins indicated no evidence of an inflammatory response during flight. Serum ferritin was positively correlated with the oxidative damage markers 8-hydroxy-2'-deoxyguanosine (r = 0.53, P < 0.001) and prostaglandin F2alpha (r = 0.26, P < 0.001), and the greater the area under the curve for ferritin during flight, the greater the decrease in bone mineral density in the total hip (P = 0.031), trochanter (P = 0.006), hip neck (P = 0.044), and pelvis (P = 0.049) after flight. CONCLUSION: Increased iron stores may be a risk factor for oxidative damage and bone resorption.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23719548

ISSN: 1938-3207 (Electronic) 0002-9165 (Linking)

DOI: 10.3945/ajcn.112.056465

Accession Number: 23719548

Share this
0
0
0
Tags: Adult, Biological Markers, blood, Bone density, Bone Resorption, Deoxyguanosine, Female, Humans, Iron, Linear Models, Male, Middle Aged, Nutritional Status, oxidative stress, Questionnaires, Space Flight, Spaceflight