Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Linear stability analysis of Korteweg stresses effect on miscible viscous fingering in porous media

Pramanik, Satyajit, et al. (2013). "Linear stability analysis of Korteweg stresses effect on miscible viscous fingering in porous media." Physics of Fluids (1994-present) 25 7: 074104

Viscous fingering (VF) is an interfacial hydrodynamic instability phenomenon observed when a fluid of lower viscosity displaces a higher viscous one in a porous media. In miscible viscous fingering, the concentration gradient of the undergoing fluids is an important factor, as the viscosity of the fluids are driven by concentration. Diffusion takes place when two miscible fluids are brought in contact with each other. However, if the diffusion rate is slow enough, the concentration gradient of the two fluids remains very large during some time. Such steep concentration gradient, which mimics a surface tension type force, called the effective interfacial tension, appears in various cases such as aqua-organic, polymer-monomer miscible systems, etc. Such interfacial tension effects on miscible VF is modeled using a stress term called Korteweg stress in the Darcy's equation by coupling with the convection-diffusion equation of the concentration. The effect of the Korteweg stresses at the onset of the instability has been analyzed through a linear stability analysis using a self-similar Quasi-steady-state-approximation (SS-QSSA) in which a self-similar diffusive base state profile is considered. The quasi-steady-state analyses available in literature are compared with the present SS-QSSA method and found that the latter captures appropriately the unconditional stability criterion at an earlier diffusive time as well as in long wave approximation. The effects of various governing parameters such as log-mobility ratio, Korteweg parameters, disturbances' wave number, etc., on the onset of the instability are discussed for, (i) the two semi-infinite miscible fluid zones and (ii) VF of the miscible slice cases. The stabilizing property of the Korteweg stresses effect is observed for both of the above mentioned cases. Critical miscible slice lengths are computed to have the onset of the instability for different governing parameters with or without Korteweg stresses. These stabilizing properties of the Korteweg stresses captured in this present study are in agreement with the numerical simulations of fully nonlinear problem and the experimental observations reported in the literature.

Related URLs:
http://scitation.aip.org/content/aip/journal/pof2/25/7/10.1063/1.4813403

DOI: doi:http://dx.doi.org/10.1063/1.4813403

Share this
0
0
0
Tags: Convection, Darcy's equation, diffusion, flow instability, Fractals, hydrodynamics, interfacial hydrodynamic instability, Korteweg stresses, nonlinear equations, Solubility, Surface tension, Viscosity, Viscous fingering