Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Microgravity Phase Separation Near the Critical Point in Attractive Colloids

Lu, Peter, et al. (2007). "Microgravity Phase Separation Near the Critical Point in Attractive Colloids." 45th AIAA Aerospace Sciences Meeting and Exhibit

We investigate the phase behavior of mixtures of colloids and polymers near their critical point in a microgravity environment. Astronauts onboard the International Space Station (ISS) are using photography to record the rate of phase separation of six samples near the liquid-gas critical point. These photographs are taken both by an automated photograpy system (based on EarthKAM hardware and software) and manually by the astronuats who have setup the experiment. We have obtained high-quality photographs of processes that are not observable on Earth, since both sedimentation and convection are negligible onboard the International Space Station. Interestingly, we observe that gravity does not affect the onset of phase separation in colloid-polymer mixtures near the liquid-gas critical point: samples which phase separate on earth also do so onboard the ISS. However, the rates at which this phase separation occurs is affected by several orders of magnitude by gravity, suggesting future avenues for exploration. The understanding of this system is important for both practical earth-bound applications, as well as the development of products and materials that are stable and function over long periods of time in a low-gravity environment. Thus, our results may assist the long-term spaceflight required for proposed exploration missions to the moon and to Mars.

Related URLs:
http://dx.doi.org/10.2514/6.2007-1152

DOI: doi:10.2514/6.2007-1152 10.2514/6.2007-1152

Share this
0
0
0
Tags: Colloid, Colloid-polymer mixtures, Critical point, International Space Station, ISS, Liquid-gas, Liquid–gas critical point, Microgravity, Phase separation, Photography procedures, polymer, Space Flight, Spaceflight