Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Monitoring on board spacecraft by means of passive detectors

Ambrozova, I., et al. (2011). "Monitoring on board spacecraft by means of passive detectors." Radiat Prot Dosimetry 144 1-4: 605-10

To estimate the radiation risk of astronauts during space missions, it is necessary to measure dose characteristics in various compartments of the spacecraft; this knowledge can be further used for estimating the health hazard in planned missions. This contribution presents results obtained during several missions on board the International Space Station (ISS) during 2005-09. A combination of thermoluminescent and plastic nuclear track detectors was used to measure the absorbed dose and dose equivalent. These passive detectors have several advantages, especially small dimensions, which enabled their placement at various locations in different compartments inside the ISS or inside the phantom. Variation of dosimetric quantities with the phase of the solar cycle and the position inside the ISS is discussed.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/20959332

ISSN: 1742-3406 (Electronic) 0144-8420 (Linking)

DOI: 10.1093/rpd/ncq305

Accession Number: 20959332

Share this
0
0
0
Tags: Astronauts, Cosmic Radiation, Humans, Imaging, International Space Station, ISS, Neutrons, Phantoms, protons, Radiation Dosage, Radiation Monitoring/instrumentation/*methods, Radiation Protection/methods, Radiometry/methods, Risk, Solar Activity, Space Flight/methods, Spacecraft