Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood

Song, K. D., et al. (2010). "Simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood." Journal of Materials Science-Materials in Medicine 21 12: 3183-3193

The simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood were carried out using bioreactors. The co-culture of umbilical cord blood (UCB)-derived hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) was performed within spinner flasks and a rotating wall vessel (RWV) bioreactor using glass-coated styrene copolymer (GCSC) microcarriers. The medium used was composed of serum-free IMDM containing a cocktail of SCF 15 ng center dot mL(-1), FL 5 ng center dot mL(-1), TPO 6 ng center dot mL(-1), IL-3 15 ng center dot mL(-1), G-CSF 1 ng center dot mL(-1) and GM-CSF 5 ng center dot mL(-1). Accessory stromal cells derived from normal allogeneic adipose tissue were encapsulated in alginate-chitosan (AC) beads and used as feeding cells. The quality of the harvested UCB-HSCs and MSCs was assessed by immunophenotype analysis, methylcellulose colony and multi-lineage differentiation assays. After 12 days of culture, the fold-expansion of total cell numbers, colony-forming units (CFU-C), CD34(+)/CD45(+)/CD105(-) (HSCs) cells and CD34(-)/CD45(-)/CD105(+) (MSCs) cells using the RWV bioreactor were (3.7 +/- A 0.3)- , (5.1 +/- A 1.2)- , (5.2 +/- A 0.4)- , and (13.9 +/- A 1.2)-fold respectively, significantly better than those obtained using spinner flasks. Moreover, UCB-HSCs and UCB-MSCs could be easily separated by gravity sedimentation after the co-culture period as only UCB-MSCs adhered on to the microcarriers. Simultaneously, we found that the fibroblast-like cells growing on the surface of the GCSC microcarriers could be induced and differentiated towards the osteoblastic, chondrocytic and adipocytic lineages. Phenotypically, these cells were very similarly to the MSCs derived from bone marrow positively expressing the MSCs-related markers CD13, CD44, CD73 and CD105, while negatively expressing the HSCs-related markers CD34, CD45 and HLA-DR. It was thus demonstrated that the simultaneous expansion and harvest of UCB-HSCs and UCB-MSCs is possible to be accomplished using a feasible bioreactor culture system such as the RWV bioreactor with the support of GCSC microcarriers.

Related URLs:
<Go to ISI>://WOS:000284600400014

ISSN: 0957-4530

DOI: 10.1007/s10856-010-4167-5

Accession Number: WOS:000284600400014

Share this
0
0
0
Tags: *Cell Culture Techniques, Antigens, Bioreactors, CD/metabolism, CD34/metabolism, CD45/metabolism, Cell Count, Cell Proliferation, Cell Separation/*methods, Cell Surface/metabolism, Cells, Coculture Techniques/methods, Cultured, Fetal Blood/*cytology, Hematopoietic Stem Cells/*cytology/metabolism/*physiology, Humans, Mesenchymal Stromal Cells/*cytology/metabolism/*physiology, Receptors, Time Factors