Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung

Tian, Jian, et al. (2010). "Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung." 108 1: 162-171

NASA has reported pulmonary abnormalities in astronauts on space missions, but the molecular changes in lung tissue remain unknown. The goal of the present study was to explore the effects of spaceflight on expression of extracellular matrix (ECM), cell adhesion, and pro-fibrotic molecules in lungs of mice flown on Space Shuttle Endeavour (STS-118). C57BL/6Ntac mice housed in animal enclosure modules during a 13-day mission in space (FLT) were killed within hours after return; ground controls were treated similarly for comparison (GRD). Analysis of genes associated with ECM and adhesion molecules was performed according to quantitative RT-PCR. The data revealed that FLT lung samples had statistically significant transcriptional changes, i.e., at least 1.5-fold, in 25 out of 84 examined genes (P < 0.05); 15 genes were upregulated and 10 were downregulated. The genes that were upregulated by more than twofold were Ctgf, Mmp2, Ncam1, Sparc, Spock1, and Timp3, whereas the most downregulated genes were Lama1, Mmp3, Mmp7, vcam-1, and Sele. Histology showed profibrosis-like changes occurred in FLT mice, more abundant collagen accumulation around blood vessels, and thicker walls compared with lung samples from GRD mice. Immunohistochemistry was used to compare expression of six selected proteins associated with fibrosis. Immunoreactivity of four proteins (MMP-2, CTGF, TGF-β1, and NCAM) was enhanced by spaceflight, whereas, no difference was detected in expression of MMP-7 and MMP-9 proteins between the FLT and GRD groups. Taken together, the data demonstrate that significant changes can be readily detected shortly after return from spaceflight in the expression of factors that can adversely influence lung function.

Related URLs:
http://jap.physiology.org/jap/108/1/162.full.pdf

DOI: 10.1152/japplphysiol.00730.2009

Share this
0
0
0
Tags: C57BL/6NTac, C57BL/6NTac mice, ECM, Extracellular Matrix, fibrosis, histopathology, lung tissue, Mice, MMP-7, MMP-9, pulmonary, respiratory, Space Flight, Space Shuttle, Spaceflight, tractrodentsgene expression