Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Animal

Spaceflight inhibits bone formation independent of corticosteroid status in growing rats

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bone formation and structure have been shown repeatedly to be altered after spaceflight. However, it is not known whether these changes are related to a stress-related altered status of the corticosteroid axis. We investigated the role of corticosteroids on spaceflight-induced effects in rat pelvis and thoracic vertebrae. Thirty-six male Sprague-Dawley rats were assigned to a flight, flight control, or vivarium group (n = 12/group). Bilateral adrenalectomy was performed in six rats per group, the additional six rats undergoing sham surgery. Adrenalectomized (ADX) rats were implanted with corticosteroid pellets. On recovery from spaceflight, thoracic vertebrae and the whole pelvis were removed and processed for biochemistry, histomorphometry, or bone cell culture studies. The 17-day spaceflight resulted in decreased bone volume (BV) in the cotyle area of pelvic bones (-12%; p < 0.05) associated with approximately 50% inhibition of bone formation in the cancellous area of pelvic metaphyses and in thoracic vertebral bodies. The latter effect was associated with a decreased number of endosteal bone cells isolated from the bone surface (BS) in these samples (-42%; p < 0.05). This also was associated with a decreased number of alkaline phosphatase positive (ALP+) endosteal bone cells at 2 days and 4 days of culture, indicating decreased osteoblast precursor cell recruitment. Maintaining basal serum corticosterone levels in flight-ADX rats did not counteract the impaired bone formation in vertebral or pelvic bones. Moreover, the decreased ex vivo number of total and ALP+ endosteal bone cells induced by spaceflight occurred independent of endogenous corticosteroid hormone levels. These results indicate that the microgravity-induced inhibition of bone formation and resulting decreased trabecular bone mass in specific areas of weight-bearing skeleton in growing rats occur independently of endogenous glucocorticoid secretion.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed5&AN=2000223590
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:&issn=0884-0431&isbn=&volume=15&issue=7&spage=1310&pages=1310-1320&date=2000&title=Journal+of+Bone+and+Mineral+Research&atitle=Spaceflight+inhibits+bone+formation+independent+of+corticosteroid+status+in+growing+rats&aulast=Zerath&pid=%3Cauthor%3EZerath+E.%3C%2Fauthor%3E&%3CAN%3E2000223590%3C%2FAN%3E

Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

by cfynanon 9 June 2015in Biology & Biotechnology No comment

A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17901201

Simulated Microgravity Maintains the Undifferentiated State and Enhances the Neural Repair Potential of Bone Marrow Stromal Cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Recently, regenerative medicine with bone marrow stromal cells (BMSCs) has gained significant attention for the treatment of central nervous system diseases. Here, we investigated the activity of BMSCs under simulated microgravity conditions. Mouse BMSCs (mBMSCs) were isolated from C57BL/6 mice and harvested in 1G condition. Subjects were divided into 4 groups: cultured under simulated microgravity and 1G condition in growth medium and neural differentiation medium. After 7 days of culture, the mBMSCs were used for morphological analysis, reverse transcription (RT)-polymerase chain reaction, immunostaining analysis, and grafting. Neural-induced mBMSCs cultured under 1G conditions exhibited neural differentiation, whereas those cultured under simulated microgravity did not. Moreover, under simulated microgravity conditions, mBMSCs could be cultured in an undifferentiated state. Next, we intravenously injected cells into a mouse model of cerebral contusion. Graft mBMSCs cultured under simulated microgravity exhibited greater survival in the damaged region, and the motor function of the grafted mice improved significantly. mBMSCs cultured under simulated microgravity expressed CXCR4 on their cell membrane. Our study indicates that culturing cells under simulated microgravity enhances their survival rate by maintaining an undifferentiated state of cells, making this a potentially attractive method for culturing donor cells to be used in grafting.

Related URLs:
<Go to ISI>://WOS:000290255300013

Microgravity effects on sea urchin fertilization and development

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=11536954
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:11536954&id=doi:&issn=0273-1177&isbn=&volume=12&issue=1&spage=167&pages=167-73&date=1992&title=Advances+in+Space+Research&atitle=Microgravity+effects+on+sea+urchin+fertilization+and+development.&aulast=Steffen&pid=%3Cauthor%3ESteffen+S%3C%2Fauthor%3E&%3CAN%3E11536954%3C%2FAN%3E

Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies’ survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies’ gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.

Related URLs:
http://dx.doi.org/10.1007/s12217-012-9334-5
http://link.springer.com/article/10.1007%2Fs12217-012-9334-5

Bdelloid rotifers as model system to study developmental biology in space

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bdelloid rotifers are suitable model systems for space experiments. Due to their developmental pattern they appear adequate to investigate the role of the cytoskeleton during oogenesis and during early developmental stages, and to reflect the effects of disturbances in the spatial arrangement of cytoskeletal components. The effect of weightlessness on the developmental pattern of a bdelloid rotifer will be studied in the International Space Station: in preparation for it we are performing ground-based experiments on the development of rotifer embryos under either increased or decreased gravity. The model studied is Macrotrachela quadricornifera, a species of rotifers belonging to the Bdelloidea class. Samples exposed to gravity disturbance were analyzed for morphology and fitness-related parameters. Rotifers were exposed over several days to altered gravity conditions and the morphology of eggs laid during this period were investigated using a confocal laser microscope. A subset of eggs was allowed to hatch to determine newborn developmental time and age at maturity. High (up to 20g) gravity was obtained in a slow centrifuge suitable for animal cultivation over several days. To produce low (simulated 0.0001g) gravity a Random Positioning Machine equipped with a ‘rotifer bioreactor’ was used. Under all conditions the rotifer retained normal life-history traits, and did not show permanent changes in embryo morphology, regardless to the stresses to which it was exposed. Only some modification of the shape of early embryos, experiencing 20g, has been noted, but later developmental stages appeared unaffected, and normal juveniles hatched. Whether this result indicates any capacity to repair damage during embryogenesis of these Spiralia experiencing 20g is an open question. The significance of the result as well as the use of instruments to simulate gravity perturbations are discussed.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed6&AN=14631628
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:14631628&id=doi:&issn=1569-2574&isbn=&volume=9&issue=&spage=25&pages=25-39&date=2003&title=Advances+in+space+biology+and+medicine&atitle=Bdelloid+rotifers+as+model+system+to+study+developmental+biology+in+space&aulast=Ricci&pid=%3Cauthor%3ERicci+C.%3C%2Fauthor%3E&%3CAN%3E14631628%3C%2FAN%3E

Masticatory muscles of mouse do not undergo atrophy in space

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 +/- 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50-90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.-Philippou, A., Minozzo, F. C., Spinazzola, J. M., Smith, L. R., Lei, H., Rassier, D. E., Barton, E. R. Masticatory muscles of mouse do not undergo atrophy in space.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25795455
http://www.fasebj.org/content/early/2015/03/20/fj.14-267336

Development and swimming behavior of Medaka fry in a spaceflight aboard the Space Shuttle Columbia (STS-107)

by cfynanon 9 June 2015in Biology & Biotechnology No comment

A space experiment aimed at closely observing the development and swimming activity of medaka fry under microgravity was carried out as a part of the S*T*A*R*S Program, a space shuttle mission, in STS-107 in January 2003. Four eggs laid on earth in an artificially controlled environment were put in a container with a functionally closed ecological system and launched on the Space Shuttle Columbia. Each egg was held in place by a strip of Velcro in the container to be individually monitored by close-up CCD cameras. In the control experiment, four eggs prepared using the same experimental set-up remained on the ground. There was no appreciable difference in the time course of development between space- and ground-based embryos. In the ground experiment, embryos were observed to rotate in place enclosed with the egg membrane, whereas those in the flight unit did not rotate. One of the four eggs hatched on the 8th day after being launched into space. All four eggs hatched in the ground unit. The fry hatched in space was mostly motionless, but with occasional control of its posture with respect to references in the experimental chamber. The fry hatched on ground were observed to move actively, controlling their posture with respect to the gravity vector. These findings suggest that the absence of gravity affects the initiation process of motility of embryos and hatched fry.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15459450
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:15459450&id=doi:&issn=0289-0003&isbn=&volume=21&issue=9&spage=923&pages=923-31&date=2004&title=Zoological+Science&atitle=Development+and+swimming+behavior+of+Medaka+fry+in+a+spaceflight+aboard+the+Space+Shuttle+Columbia+%28STS-107%29.&aulast=Niihori&pid=%3Cauthor%3ENiihori+M%3C%2Fauthor%3E&%3CAN%3E15459450%3C%2FAN%3E

Skin physiology in microgravity: a 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Aims: The Mice Drawer System (MDS) Tissue Sharing program was the longest rodent space mission ever performed. It provided 20 research teams with organs and tissues collected from mice having spent 3 months on the International Space Station (ISS). Our participation to this experiment aimed at investigating the impact of such prolonged exposure to extreme space conditions on mouse skin physiology. Methods: Mice were maintained in the MDS for 91 days aboard ISS (space group (S)). Skin specimens were collected shortly after landing for morphometric, biochemical, and transcriptomic analyses. An exact replicate of the experiment in the MDS was performed on ground (ground group (G)). Results: A significant reduction of dermal thickness (−15%, P=0.05) was observed in S mice accompanied by an increased newly synthetized procollagen (+42%, P=0.03), likely reflecting an increased collagen turnover. Transcriptomic data suggested that the dermal atrophy might be related to an early degradation of defective newly formed procollagen molecules. Interestingly, numerous hair follicles in growing anagen phase were observed in the three S mice, validated by a high expression of specific hair follicles genes, while only one mouse in the G controls showed growing hairs. By microarray analysis of whole thickness skin, we observed a significant modulation of 434 genes in S versus G mice. A large proportion of the upregulated transcripts encoded proteins related to striated muscle homeostasis. Conclusions: These data suggest that a prolonged exposure to space conditions may induce skin atrophy, deregulate hair follicle cycle, and markedly affect the transcriptomic repertoire of the cutaneous striated muscle panniculus carnosus.

Related URLs:
http://dx.doi.org/10.1038/npjmgrav.2015.2

Drosophila melanogaster and the future of 'evo-devo' biology in space. Challenges and problems in the path of an eventual colonization project outside the earth

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Space exploration, especially its future phase involving the International Space Station (ISS) makes possible the study of the effects on living systems of long-term expositions to such a strange environment. This phase is being initiated when Biological Sciences are crossing a no-return line into a new territory where the connection between phenotype and genotype may be finally made. We briefly review the paradoxical results obtained in Space experiments performed during the last third of the XX Century. They reveal that simple unicellular systems sense the absence of gravity changing their cytoskeletal organization and the signal transduction pathways, while animal development proceeds unaltered in these conditions, in spite of the fact that these processes are heavily involved in embryogenesis. Longer-term experiments possible in the ISS may solve this apparent contradiction. On the other hand, the current constraints on the scientific use of the ISS makes necessary the development of new hardware and the modification of current techniques to start taking advantage of this extraordinary technological facility. We discuss our advances in this direction using one of the current key biological model systems, Drosophila melanogaster. In addition, the future phase of Space exploration, possibly leading to the exploration and, may be, the colonization of another planet, will provide the means of performing interesting evolutionary experiments, studying how the terrestrial biological systems will change in their long-term adaptation to new, very different environments. In this way, Biological Research in Space may contribute to the advancement of the new Biology, in particular to the branch known as "Evo-Devo". On the other hand, as much as the Space Adventure will continue involving human beings as the main actors in the play, long-term multi-generation experiments using a fast reproducing species, such as Drosophila melanogaster, capable of producing more than 300 generations in 15 years, the useful life foreseen for ISS, will be important. Among other useful information, they will help in detecting the possible changes that a biological species may undergo in such an environment, preventing the uncontrolled occurrence of irreversible deleterious effects with catastrophic consequences on the living beings participating in this endeavour.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/14631629

  • 1
  • 2
  • »

Researcher Interviews

No items found

Projects in Flight

  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS