Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Arabidopsis thaliana

Testing the Bio-compatibility of Aluminum PDFU BRIC Hardware

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Biological research in an orbital environment necessitates the containment of the sample and its associated chemical fixatives. The Biological Research in Canisters (BRIC) hardware developed by Kennedy Space Center has been widely used in several configurations to support biological experiments on the Shuttle and the International Space Station (ISS). The current model of BRIC hardware contains six Petri Dish Fixation Units (PDFUs), each of which holds one Petri plate containing the specimen. This study compares traditional polycarbonate PDFUs to PDFUs primarily composed of aluminum with respect to their biocompatibility with Arabidopsis thaliana (Arabidopsis) growth and development. Seeds were planted on nutrient agar plates and inserted into either polycarbonate or aluminum PDFUs, which were then secured in the BRIC hardware. Plates were allowed to develop in the PDFUs in the dark for a period of 12 days, after which they were preserved by either RNAlater or glutaraldehyde, harvested, photographed, RNA- extracted, and prepared for gene expression analyses. Direct comparison of the etiolated Arabidopsis seedlings from the polycarbonate and aluminum PDFUs presented no discernible morphological differences, nor were there any significant differences between the expression levels of several target genes chosen for their sensitivity in reporting an aluminum stress response.

Related URLs:
http://gravitationalandspacebiology.org/index.php/journal/article/view/591

Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana

by cfynanon 9 June 2015in Biology & Biotechnology No comment

PREMISE OF THE STUDY: Gravity has been a major force throughout the evolution of terrestrial organisms, and plants have developed exquisitely sensitive, regulated tropisms and growth patterns that are based on the gravity vector. The nullified gravity during spaceflight allows direct assessment of gravity roles. The microgravity environments provided by the Space Shuttle and International Space Station have made it possible to seek novel insights into gravity perception at the organismal, tissue, and cellular levels. Cell cultures of Arabidopsis thaliana perceive and respond to spaceflight, even though they lack the specialized cell structures normally associated with gravity perception in intact plants; in particular, genes for a specific subset of heat shock proteins (HSPs) and factors (HSFs) are induced. Here we ask if similar changes in HSP gene expression occur during nonspaceflight changes in gravity stimulation. METHODS: Quantitative RT-qPCR was used to evaluate mRNA levels for Hsp17.6A and Hsp101 in cell cultures exposed to four conditions: spaceflight (mission STS-131), hypergravity (centrifugation at 3 g or 16 g), sustained two-dimensional clinorotation, and transient milligravity achieved on parabolic flights. KEY RESULTS: We showed that HSP genes were induced in cells only in response to sustained clinorotation. Transient microgravity intervals in parabolic flight and various hypergravity conditions failed to induce HSP genes. CONCLUSIONS: We conclude that nondifferentiated cells do indeed sense their gravity environment and HSP genes are induced only in response to prolonged microgravity or simulated microgravity conditions. We hypothesize that HSP induction upon microgravity indicates a role for HSP-related proteins in maintaining cytoskeletal architecture and cell shape signaling.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23258370
http://www.amjbot.org/content/100/1/235.full.pdf

MIZ1, an essential protein for root hydrotropism, is associated with the cytoplasmic face of the endoplasmic reticulum membrane in Arabidopsis root cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

MIZ1 is encoded by a gene essential for root hydrotropism in Arabidopsis. To characterize the property of MIZ1, we used transgenic plants expressing GFP-tagged MIZ1 (MIZ1-GFP) and mutant MIZ1 (MIZ1(G235E)-GFP) in a miz1-1 mutant. Although both chimeric genes were transcribed, the translational products of MIZ1(G235E)-GFP did not accumulate in roots. Moreover, MIZ1-GFP complemented the mutant phenotype but not MIZ1(G235E)-GFP. The signal corresponding to MIZ1-GFP was detected at high levels in cortical cells and lateral root cap cells and accumulated in compartments in cortical cells. MIZ1-GFP was fractionated into a soluble protein fraction and an endoplasmic reticulum (ER) membrane fraction, where it was bound to the surface of the ER membrane at the cytosolic side.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/22285304

Red Light Effects on Blue Light–Based Phototropism in Roots of Arabidopsis thaliana

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Premise of research. Light has profound effects on plant development, and the interaction between red and blue light pathways can play a significant role in the phototropism of plant seedlings. The aim of this research was to clarify the involvement of red light effects on blue light phototropism in both roots and hypocotyls of Arabidopsis thaliana seedlings. Pivotal results. In contrast to the well-documented effects in hypocotyls, we found that red light inhibits blue light–based phototropism in roots of the Landsberg ecotype and that this inhibition is reduced in mutants lacking phytochromes A and B. Attenuation of blue light root phototropism by red illumination was also observed in Arabidopsis seedlings of the C24 ecotype, and this inhibition was not observed in a transgenic strain lacking all phytochromes (in which the deficiency is specific to the root only). However, in contrast to the Landsberg and C24 ecotypes, roots of Arabidopsis seedlings of the Columbia ecotype display a significant enhancement of blue light phototropism by red light pretreatment. Conclusions.Our results suggest that differences exist in the mechanisms of phototropism based on ecotype and that phytochromes are involved in the red light attenuation of blue light–based root phototropism when it occurs. This study is one of the first to consider red light effects specifically on root phototropism.

Related URLs:

Ultradian rhythms in Arabidopsis thaliana leaves in microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Ultradian movements of Arabidopsis thaliana rosette leaves were discovered and studied under microgravity conditions in space. Weightlessness revealed new facets of these movements. The European Modular Cultivation System (EMCS) was used in a long-term white-light, light-darkness (LD; 16 : 8 h) experiment on the International Space Station (ISS). Leaves reacted with slow up or down movement (time constant several hours) after transitions to darkness or light, respectively. Superimposed movements with periods of c. 80-90 min and small-amplitude pulsed movements of 45 min were present in the light. Signal analysis (fast Fourier transform (FFT) analysis) revealed several types and frequencies of movements. Identical phase coupling was observed between the 45-min movements of the leaves of one plant. In darkness, movements of c. 120-min period were recorded. The EMCS allowed 0-g to 1-g transitions to be created. Leaves on plants germinated in microgravity started a negative gravitropic reaction after a delay of c. 30 min. Leaves grown on a 1-g centrifuge reacted to the same transition with an equal delay but had a weaker gravitropic response. The experiments provide unequivocal demonstrations of ultradian, self-sustained rhythmic movements in A. thaliana rosette leaves in the absence of the effect of gravity.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19538548

3D information from 2D images recorded in the European Modular Cultivation System on the ISS

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The European Modular Cultivation System (EMCS) on the ISS allows long-term biological experiments, e.g. on plants. Video cameras provide near real-time 2D images from these experiments. A method to obtain 3D coordinates and stereoscopic images from these 2D images has been developed and is described in this paper. The procedure was developed to enhance the data output of the MULTIGEN-1 experiment in 2007. One of the main objectives of the experiment was to study growth movements of the Arabidopsis plants and the effect of gravity on these. 3D data were important during parts of the experiment and the paper presents the method developed to acquire 3D data, the accuracy of the data, limitations to the technique and ways to improve the accuracy. Sequences of 3D data obtained from the MULTIGEN-1 experiment are used to illustrate the potential of this newfound capability of the EMCS. In the experiment setup, a positional depth accuracy of about ±0.4 mm for relative object distances and an absolute depth accuracy of about ±1.4 mm for time dependent phenomena was reached. The ability to both view biological specimens in 3D as well as obtaining quantitative 3D data added greatly to the scientific output of the MULTIGEN-1 experiment. The uses of the technique to other researchers and their experiments are discussed.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117709004840

A method for preparing spaceflight RNAlater-fixed Arabidopsis thaliana (Brassicaceae) tissue for scanning electron microscopy

by cfynanon 9 June 2015in Biology & Biotechnology No comment

* PREMISE OF THE STUDY: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. * METHODS AND RESULTS: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. * CONCLUSIONS: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25202579
http://www.bioone.org/doi/pdf/10.3732/apps.1300034

Plant growth strategies are remodeled by spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

BACKGROUND: Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. RESULTS: In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. CONCLUSIONS: Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting that other tropisms (such as for oxygen and temperature) do not influence skewing. An aspect of the spaceflight environment also retards the rate of early Arabidopsis growth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23217113

Spaceflight Transcriptomes: Unique Responses to a Novel Environment

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock–related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity.

Related URLs:
http://dx.doi.org/10.1089/ast.2011.0696

Cell Wall-Related Genes Involved in Supporting Tissue Formation and Transcriptional Regulation in Arabidopsis thaliana

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The characteristic growth pattern of vascular plants largely depends on the intrinsic properties of their cell walls, which are flexible, but strong enough to support the plant body. The plant body is composed of various tissues each with a specific cell wall type. Different sets of enzymes are required for the construction of these individual cell wall types. The cell wall type-specific enzyme-set hypothesis has been described to explain the mechanisms underlying cell wall construction. This hypothesis suggests that specific sets of transcription factors are required for the construction of each of the cell-wall types. Recent reverse genetic studies investigating secondary wall formation in Arabidopsis thaliana have demonstrated the existence of a hierarchical transcriptional network that governs the regulation of secondary wall formation in cell wall types. The examination of the effects of mechanical stimuli on the expression of genes encoding a particular set of cell wall-related enzymes and transcriptional factors has shown that A. thaliana is able to perceive subtle changes in self-weight of the aerial portions, and use this information as a signal to regulate formation of cell walls in the supporting tissues. However, the mechanisms by which mechanical signals are perceived via sensors presumably located at the cell surface remain unknown. In addition, the pathways through which the signal is transmitted and integrated into the transcriptional network that governs the coordinated actions of cell wall-related genes are also yet to be described. Current reverse genetic approaches based on comprehensive expression analysis of cell wall-related genes may aid in the elucidation of the regulatory mechanisms underlying supporting tissue formation via mechanical signals. Such information may contribute not only to a further understanding of the molecular basis underlying evolution of the plant vascular system, but may also provide us with the knowledge required for the future development and utilization of plant cell walls as a sustainable resource.

Related URLs:

  • 1
  • 2
  • 3
  • »

Researcher Interviews

No items found

Projects in Flight

  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS