Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: BBND

Measurements of Cosmic-Ray Neutron Energy Spectra from Thermal to 15 MeV with Bonner Ball Neutron Detector in Aircraft

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Cosmic-ray neutron energy spectra from thermal to 15MeV were measured with a multimoderator spectrometer known as the Bonner Ball Neutron Detector (BBND) at aviation altitude (9?11 km). Four flights were carried out around Nagoya Airport in Japan. The measured data were unfolded using the maximum entropy deconvolution code MAXED, and the derived spectra agreed with the calculated results using the PHITS-based analytical radiation model in the atmosphere (PARMA). The results of the in-flight measurement verified the accuracy of model calculation in regard to the neutrons within a certain energy range.

Related URLs:
http://www.tandfonline.com/doi/abs/10.1080/18811248.2010.9711934

Evaluation of the neutron radiation environment inside the International Space Station based on the Bonner Ball Neutron Detector experiment

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The Bonner Ball Neutron Detector (BBND) experiment was conducted onboard the US Laboratory Module of the International Space Station (ISS) as part of the Human Research Facility project of NASA in order to evaluate the neutron radiation environment in the energy range from thermal up to 15 MeV inside the ISS. The BBND experiment was carried out over an eight-month period from 23 March through 14 November 2001, corresponding to the maximum period of solar-activity variation. The neutron differential-energy spectra are compared with the model neutron spectrum predicted for the inside of the ISS, and are found to be in good agreement for E > 10 keV . In contrast, the ISS model spectrum has lower flux for E < 10 keV , which is likely due to the difference in the shielding environment. The neutron dose equivalent rates are 69 and 88 μ Sv / day for the two locations inside the US Laboratory Module, representing a 30% increase due to the difference in the localized shielding environment inside the same pressurized module. The influence of the ISS altitude variation is estimated for the neutron dose equivalent rate to increase by a factor of 2 over the ISS altitude variation of 300–500 km. The increase in the cumulative neutron dose equivalent due to the most significant solar event during the BBND experiment is 0.15 mSv, which contributes less than 1% to the annual neutron dose equivalent estimated from the BBND experiment.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S1350448707001679

Researcher Interviews

No items found

Projects in Flight

  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS