Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Biological Research in Canisters

Space, the final frontier: A critical review of recent experiments performed in microgravity

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26795156

The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide evidence that, like root gravity responses on Earth, endogenous directional growth patterns of roots in microgravity are suppressed by the actin cytoskeleton. Modulation of root growth in space by actin could be facilitated in part through its impact on cell wall architecture.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23952736

Morphometric analyses of petioles of seedlings grown in a spaceflight experiment

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Gravity is a constant unidirectional stimulus on Earth, and gravitropism in plants involves three phases: perception, transduction, and response. In shoots, perception takes place within the endodermis. To investigate the cellular machinery of perception in microgravity, we conducted a spaceflight study with Arabidopsis thaliana seedlings, which were grown in microgravity in darkness using the Biological Research in Canisters (BRIC) hardware during space shuttle mission STS-131. In the 14-day-old etiolated plants, we studied seedling development and the morphological parameters of the endodermal cells in the petiole. Seedlings from the spaceflight experiment (FL) were compared to a ground control (GC), which both were in the BRIC flight hardware. In addition, to assay any potential effects from growth in spaceflight hardware, we performed another control by growing seedlings in Petri dishes in standard laboratory conditions (termed the hardware control, HC). Seed germination was significantly lower in samples grown in flight hardware (FL, GC) compared to the HC. In terms of cellular parameters of endodermal cells, the greatest differences also were between seedlings grown in spaceflight hardware (FL, GC) compared to those grown outside of this hardware (HC). Specifically, the endodermal cells were significantly smaller in seedlings grown in the BRIC system compared to those in the HC. However, a change in the shape of the cell, suggesting alterations in the cell wall, was one parameter that appears to be a true microgravity effect. Taken together, our results suggest that caution must be taken when interpreting results from the increasingly utilized BRIC spaceflight hardware system and that it is important to perform additional ground controls to aid in the analysis of spaceflight experiments.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26376793

Testing the Bio-compatibility of Aluminum PDFU BRIC Hardware

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Biological research in an orbital environment necessitates the containment of the sample and its associated chemical fixatives. The Biological Research in Canisters (BRIC) hardware developed by Kennedy Space Center has been widely used in several configurations to support biological experiments on the Shuttle and the International Space Station (ISS). The current model of BRIC hardware contains six Petri Dish Fixation Units (PDFUs), each of which holds one Petri plate containing the specimen. This study compares traditional polycarbonate PDFUs to PDFUs primarily composed of aluminum with respect to their biocompatibility with Arabidopsis thaliana (Arabidopsis) growth and development. Seeds were planted on nutrient agar plates and inserted into either polycarbonate or aluminum PDFUs, which were then secured in the BRIC hardware. Plates were allowed to develop in the PDFUs in the dark for a period of 12 days, after which they were preserved by either RNAlater or glutaraldehyde, harvested, photographed, RNA- extracted, and prepared for gene expression analyses. Direct comparison of the etiolated Arabidopsis seedlings from the polycarbonate and aluminum PDFUs presented no discernible morphological differences, nor were there any significant differences between the expression levels of several target genes chosen for their sensitivity in reporting an aluminum stress response.

Related URLs:
http://gravitationalandspacebiology.org/index.php/journal/article/view/591

An endogenous growth pattern of roots is revealed in seedlings grown in microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010. Seedlings were grown on nutrient agar in Petri dishes in BRIC hardware under dark conditions and then fixed in flight with paraformaldehyde, glutaraldehyde, or RNAlater. Although the long-term objective was to study the role of the actin cytoskeleton in gravity perception, in this article we focus on the analysis of morphology of seedlings that developed in microgravity. While previous spaceflight studies noted deleterious morphological effects due to the accumulation of ethylene gas, no such effects were observed in seedlings grown with the BRIC system. Seed germination was 89% in the spaceflight experiment and 91% in the ground control, and seedlings grew equally well in both conditions. However, roots of space-grown seedlings exhibited a significant difference (compared to the ground controls) in overall growth patterns in that they skewed to one direction. In addition, a greater number of adventitious roots formed from the axis of the hypocotyls in the flight-grown plants. Our hypothesis is that an endogenous response in plants causes the roots to skew and that this default growth response is largely masked by the normal 1 g conditions on Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/21970704

Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development

by cfynanon 9 June 2015in Biology & Biotechnology No comment

• Premise of the study: Plants will be an important component of advanced life support systems during space exploration missions. Therefore, understanding their biology in the spacecraft environment will be essential before they can be used for such systems.• Methods: Seedlings of Arabidopsis thaliana were grown for 2 wk in the Biological Research in Canisters (BRIC) hardware on board the second to the last mission of the space shuttle Discovery (STS-131). Transcript profiles between ground controls and space-grown seedlings were compared using stringent selection criteria.• Key results: Expression of transcripts associated with oxidative stress and cell wall remodeling was repressed in microgravity. These downregulated genes were previously shown to be enriched in root hairs consistent with seedling phenotypes observed in space. Mutations in genes that were downregulated in microgravity, including two uncharacterized root hair-expressed class III peroxidase genes (PRX44 and PRX57), led to defective polar root hair growth on Earth. PRX44 and PRX57 mutants had ruptured root hairs, which is a typical phenotype of tip-growing cells with defective cell walls and those subjected to stress.• Conclusions: Long-term exposure to microgravity negatively impacts tip growth by repressing expression of genes essential for normal root hair development. Whereas changes in peroxidase gene expression leading to reduced root hair growth in space are actin-independent, root hair development modulated by phosphoinositides could be dependent on the actin cytoskeleton. These results have profound implications for plant adaptation to microgravity given the importance of tip growing cells such as root hairs for efficient nutrient capture.

Related URLs:
http://www.amjbot.org/content/102/1/21.abstract
http://www.amjbot.org/content/102/1/21.full.pdf

Researcher Interviews

No items found

Projects in Flight

  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS