Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Bion satellite

Salivary Gland Protein Expression after Bion-M1 and Space Shuttle STS-135 Missions

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Secretory proteins produced by salivary glands are stored in granules and released into saliva. Rodent salivary glands are a reliable experimental model because they are morphologically and functionally similar to those of humans. To determine if the effects of microgravity on secretory proteins are increased on extended flights, their expression in mouse parotid glands, morphological, immuno- cytochemical, and biochemical/molecular methods were employed. Acinar cells of STS-135 (13 day) and Bion-M1 (30 day) flight animals showed an increase of autophagy and apoptosis, while duct cells contained vacuoles with endocytosed proteins. In STS-135, decreases were seen in the regulatory subunit of type II protein kinase A (RII) by Western blotting, and demilune cell and parotid protein (DCPP) and α- amylase (p<0.01) by immunogold labeling, while proline-rich proteins (PRPs, p<0.001) and parotid secretory protein (PSP, p<0.05) were increased. These results suggest microgravity effects on secretion are function-dependent. Microarray analyses showed significant changes in the expression of a number of genes, including components of the cyclic-3',5',-adenosine monophosphate (cyclic AMP) signaling pathway. Compared to habitat ground controls, mice from both flights exhibited altered expression of cyclic AMP-specific phosphodiesterases, adenylate cyclase isoforms, and several A-kinase anchoring proteins. Bion-M1 flight mice showed increases in gene expression for lysozyme and amylase, a decrease in PRPs, and RII expression was unchanged from control values. Secretory protein expression is altered by travel in space, representing a reversible adjustment to microgravity conditions. Ultimately, the goal is to develop a test kit using saliva — an easily obtained body fluid — to assess the physiologic effects of travel in space. Related URLs:
http://gravitationalandspacebiology.org/index.php/journal/article/viewFile/678/697

Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

by cfynanon 22 August 2016in Earth Science and Remote Sensing No comment

A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26697408

Researcher Interviews

No items found

Projects in Flight

  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS