Secretory proteins produced by salivary glands are stored in granules and released into saliva. Rodent salivary glands are a reliable experimental model because they are morphologically and functionally similar to those of humans. To determine if the effects of microgravity on secretory proteins are increased on extended flights, their expression in mouse parotid glands, morphological, immuno- cytochemical, and biochemical/molecular methods were employed. Acinar cells of STS-135 (13 day) and Bion-M1 (30 day) flight animals showed an increase of autophagy and apoptosis, while duct cells contained vacuoles with endocytosed proteins. In STS-135, decreases were seen in the regulatory subunit of type II protein kinase A (RII) by Western blotting, and demilune cell and parotid protein (DCPP) and α- amylase (p<0.01) by immunogold labeling, while proline-rich proteins (PRPs, p<0.001) and parotid secretory protein (PSP, p<0.05) were increased. These results suggest microgravity effects on secretion are function-dependent. Microarray analyses showed significant changes in the expression of a number of genes, including components of the cyclic-3',5',-adenosine monophosphate (cyclic AMP) signaling pathway. Compared to habitat ground controls, mice from both flights exhibited altered expression of cyclic AMP-specific phosphodiesterases, adenylate cyclase isoforms, and several A-kinase anchoring proteins. Bion-M1 flight mice showed increases in gene expression for lysozyme and amylase, a decrease in PRPs, and RII expression was unchanged from control values. Secretory protein expression is altered by travel in space, representing a reversible adjustment to microgravity conditions. Ultimately, the goal is to develop a test kit using saliva — an easily obtained body fluid — to assess the physiologic effects of travel in space.
Related URLs:
http://gravitationalandspacebiology.org/index.php/journal/article/viewFile/678/697

Research Containing: Bion satellite
Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration
A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26697408