Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Bioreactors

Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation

by cfynanon 9 June 2015in Biology & Biotechnology No comment

As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immunocompromised astronauts during long-term missions. Therefore, insights into the behaviour of P. aeruginosa under spaceflight conditions were gained using two spaceflight-analogue culture systems: the rotating wall vessel (RWV) and the random position machine (RPM). Microarray analysis of P. aeruginosa PAO1 grown in the low shear modelled microgravity (LSMMG) environment of the RWV, compared with the normal gravity control (NG), revealed an apparent regulatory role for the alternative sigma factor AlgU (RpoE-like). Accordingly, P. aeruginosa cultured in LSMMG exhibited increased alginate production and upregulation of AlgU-controlled transcripts, including those encoding stress-related proteins. The LSMMG increased heat and oxidative stress resistance and caused a decrease in the oxygen transfer rate of the culture. This study also showed the involvement of the RNA-binding protein Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG and spaceflight response. The global transcriptional response of P. aeruginosa grown in the RPM was highly similar to that in NG. Fluid mixing was assessed in both systems and is believed to be a pivotal factor contributing to transcriptional differences between RWV- and RPM-grown P. aeruginosa. This study represents the first step towards the identification of virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections during spaceflight and in immunocompromised patients.

Related URLs:
http://dx.doi.org/10.1111/j.1462-2920.2010.02184.x

Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity (μ g) may modulate the proliferation and differentiation. We investigated the application of μ g to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μ g for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in I G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers per-formed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μ g may be potentially beneficial in the fields of stem cell biology and somatic cell therapy. © 2005 Elsevier Ltd. All rights reserved.

Related URLs:
<Go to ISI>://WOS:000229063800018

Nitric oxide affects preimplantation embryonic development in a rotating wall vessel bioreactor simulating microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Microgravity was simulated with a rotating wall vessel bioreactor (RWVB) in order to study its effect on pre-implantation embryonic development in mice. Three experimental groups were used: stationary control, rotational control and clinostat rotation. Three experiments were performed as follows. The first experiment showed that compared with the other two (control) groups, embryonic development was significantly retarded after 72 h in the clinostat rotation group. The second experiment showed that more nitric oxide (NO) was produced in the culture medium in the clinostat rotation group after 72 h (P < 0.05), and the nitric oxide synthase (NOS) activity in this group was significantly higher than in the controls (P < 0.01). In the third experiment, we studied apoptosis in the pre-implantation mouse embryos after 72 h in culture and found that Annexin-V staining was negative in the normal (stationary and rotational control) embryos, but the developmentally retarded (clinostat rotation) embryos showed a strong green fluorescence. These results indicate that microgravity induced developmental retardation and cell apoptosis in the mouse embryos. We presume that these effects are related to the higher concentration of NO in the embryos under microgravity, which have cause cytotoxic consequences. (c) 2006 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Related URLs:
<Go to ISI>://WOS:000244297300004

  • «
  • 1
  • 2
  • 3
  • 4

Researcher Interviews

No items found

Projects in Flight

  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS