Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Blood Pressure

Orthostatic Intolerance After ISS and Space Shuttle Missions

by cfynanon 22 August 2016in Biology & Biotechnology No comment

INTRODUCTION: Cardiovascular deconditioning apparently progresses with flight duration, resulting in a greater incidence of orthostatic intolerance following long-duration missions. Therefore, we anticipated that the proportion of astronauts who could not complete an orthostatic tilt test (OTT) would be higher on landing day and the number of days to recover greater after International Space Station (ISS) than after Space Shuttle missions. METHODS: There were 20 ISS and 65 Shuttle astronauts who participated in 10-min 80 degrees head-up tilt tests 10 d before launch, on landing day (R+0), and 3 d after landing (R+3). Fisher’s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the OTT. Cox regression was used to identify cardiovascular parameters associated with OTT completion and mixed model analysis was used to compare the change and recovery rates between groups. RESULTS: The proportion of astronauts who completed the OTT on R+0 (2 of 6) was less in ISS than in Shuttle astronauts (52 of 65). On R+3, 13 of 15 and 19 of 19 of the ISS and Shuttle astronauts, respectively, completed the OTT. An index comprised of stroke volume and diastolic blood pressure provided a good prediction of OTT completion and was altered by spaceflight similarly for both astronaut groups, but recovery was slower in ISS than in Shuttle astronauts. CONCLUSIONS: The proportion of ISS astronauts who could not complete the OTT on R+0 was greater and the recovery rate slower after ISS compared to Shuttle missions. Thus, mission planners and crew surgeons should anticipate the need to tailor scheduled activities and level of medical support to accommodate protracted recovery after long-duration microgravity exposures.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26630196

Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space

by cfynanon 22 August 2016in Biology & Biotechnology No comment

It is a challenge for the human body to maintain stable blood pressure while standing. The body’s failure to do so can lead to dizziness or even fainting. For decades it has been postulated that the vestibular organ can prevent a drop in pressure during a position change–supposedly mediated by reflexes to the cardiovascular system. We show–for the first time–a significant correlation between decreased functionality of the vestibular otolith system and a decrease in the mean arterial pressure when a person stands up. Until now, no experiments on Earth could selectively suppress both otolith systems; astronauts returning from space are a unique group of subjects in this regard. Their otolith systems are being temporarily disturbed and at the same time they often suffer from blood pressure instability. In our study, we observed the functioning of both the otolith and the cardiovascular system of the astronauts before and after spaceflight. Our finding indicates that an intact otolith system plays an important role in preventing blood pressure instability during orthostatic challenges. Our finding not only has important implications for human space exploration; they may also improve the treatment of unstable blood pressure here on Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26671177

Impaired cerebrovascular autoregulation and reduced CO(2) reactivity after long duration spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO(2). Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 +/- 49 days on ISS. Preflight testing (30-60 days before launch) was compared with postflight testing on landing day (n = 4) or the morning 1 (n = 2) or 2 days (n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BP(MCA)) and expired CO(2) were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BP(MCA)/CBFV). Cerebrovascular autoregulation and CO(2) reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO(2) were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during -20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BP(MCA) (P = 0.017). The postflight responses to CO(2) were reduced for CBFV (P = 0.056) and CVRi (P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO(2) reactivity.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/22492717

Reduced heart rate variability during sleep in long-duration spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Limited data are available to describe the regulation of heart rate (HR) during sleep in spaceflight. Sleep provides a stable supine baseline during preflight Earth recordings for comparison of heart rate variability (HRV) over a wide range of frequencies using both linear, complexity, and fractal indicators. The current study investigated the effect of long-duration spaceflight on HR and HRV during sleep in seven astronauts aboard the International Space Station up to 6 mo. Measurements included electrocardiographic waveforms from Holter monitors and simultaneous movement records from accelerometers before, during, and after the flights. HR was unchanged inflight and elevated postflight [59.6 +/- 8.9 beats per minute (bpm) compared with preflight 53.3 +/- 7.3 bpm; P < 0.01]. Compared with preflight data, HRV indicators from both time domain and power spectral analysis methods were diminished inflight from ultralow to high frequencies and partially recovered to preflight levels after landing. During inflight and at postflight, complexity and fractal properties of HR were not different from preflight properties. Slow fluctuations (<0.04 Hz) in HR presented moderate correlations with movements during sleep, partially accounting for the reduction in HRV. In summary, substantial reduction in HRV was observed with linear, but not with complexity and fractal, methods of analysis. These results suggest that periodic elements that influence regulation of HR through reflex mechanisms are altered during sleep in spaceflight but that underlying system complexity and fractal dynamics were not altered.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23637139

Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

AIM: Astronauts commonly return from space with altered short-term cardiovascular dynamics and blunted baroreflex sensitivity. Although many studies have addressed this issue, post-flight effects on the dynamic circulatory control remain incompletely understood. It is not clear how long the cardiovascular system needs to recover from spaceflight as most post-flight investigations only extended between a few days and 2 weeks. METHODS: In this study, we examined the effect of short-duration spaceflight (1-2 weeks) on respiratory-mediated cardiovascular rhythms in five cosmonauts. Two paced-breathing protocols at 6 and 12 breaths min(-1) were performed in the standing and supine positions before spaceflight, and after 1 and 25 days upon return. Dynamic baroreflex function was evaluated by transfer function analysis between systolic pressure and the RR intervals. RESULTS: Post-flight orthostatic blood pressure control was preserved in all cosmonauts. In the standing position after spaceflight there was an increase in heart rate (HR) of approx. 20 beats min(-1) or more. Averaged for all five cosmonauts, respiratory sinus dysrhythmia and transfer gain reduced to 40% the day after landing, and had returned to pre-flight levels after 25 days. Low-frequency gain decreased from 6.6 (3.4) [mean (SD)] pre-flight to 3.9 (1.6) post-flight and returned to 5.7 (1.3) ms mmHg(-1) after 25 days upon return to Earth. Unlike alterations in the modulation of HR, blood pressure dynamics were not significantly different between pre- and post-flight sessions. CONCLUSION: Our results indicate that short-duration spaceflight reduces respiratory modulation of HR and decreases cardiac baroreflex gain without affecting post-flight arterial blood pressure dynamics. Altered respiratory modulation of human autonomic rhythms does not persist until 25 days upon return to Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17784903

Adaptation of heart rate and blood pressure to short and long duration space missions

by cfynanon 9 June 2015in Biology & Biotechnology No comment

To what extent does going to space affect cardiovascular function? Although many studies have addressed this question, the answer remains controversial. Even for such primary parameters as heart rate (HR) and blood pressure (BP) contradictory results have been presented. The purpose of this investigation was to evaluate HR and arterial BP in 11 male astronauts who each took part in nine different space missions aboard the International Space Station (ISS), for up to 6 months. Pre-flight HR and BP readings were obtained in both the standing and supine positions on Earth and were taken as reference values. Our results show that HR and arterial BP in space equal pre-flight supine values. In all subjects, HR and mean arterial BP (MAP) were lower in space compared with pre-flight standing (both 0.05). HR in space was well maintained at pre-flight supine level for up to 6 months in all astronauts while MAP tended to adapt to a level in between the ground-based standing and supine positions. Also pulse pressure (PP) decreased over the course of long duration spaceflight. In conclusion, our data indicate that weightlessness relaxes the circulation in humans for an extended duration of up to 6 months in space.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S1569904809000652

Operational point of neural cardiovascular regulation in humans up to 6 months in space

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Entering weightlessness affects central circulation in humans by enhancing venous return and cardiac output. We tested whether the operational point of neural cardiovascular regulation in space sets accordingly to adopt a level close to that found in the ground-based horizontal position. Heart rate (HR), finger blood and brachial blood pressure (BP), and respiratory frequency were collected in 11 astronauts from nine space missions. Recordings were made in supine and standing positions at least 10 days before launch and during spaceflight (days 5–19, 45–67, 77–116, 146–180). Cross-correlation analyses of HR and systolic BP were used to measure three complementary aspects of cardiac baroreflex modulation: 1) baroreflex sensitivity, 2) number of effective baroreflex estimates, and 3) baroreflex time delay. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic BP variability. We found that HR and mean arterial pressure did not differ from preflight supine values for up to 6 mo in space. Respiration frequency tended to decrease during prolonged spaceflight. Concerning neural markers of cardiovascular regulation, we observed in-flight adaptations toward homeostatic conditions similar to those found in the ground-based supine position. Surprisingly, this was not the case for baroreflex time delay distribution, which had somewhat longer latencies in space. Except for this finding, our results confirm that the operational point of neural cardiovascular regulation in space sets to a level close to that of an Earth-based supine position. This adaptation level suggests that circulation is chronically relaxed for at least 6 mo in space.

Related URLs:
http://jap.physiology.org/jap/108/3/646.full.pdf

Dependence of the circulation system functioning on cosmonaut age according to the results of physical loading tests on a veloergometer

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Age-related hemodynamic reactions to the standard incremental physical loading tests on a cycle ergometer were assessed in cosmonauts before and during extended space missions. Analysis of the data from 353 tests performed with 63 cosmonauts differentiated into three age groups (30–39, 40–49, and 50–55 years old) showed changes in adaptive-compensatory hemodynamic responses to microgravity and physical loading depending on age. The consistent gradual degradation of the heart chronotropic function with age can be interpreted as a symptom of declining cardiovascular reactivity. In orbit, the cardiac output volume depended mainly on heart rate and blood pressure (i.e., vascular tone).

Related URLs:
http://dx.doi.org/10.1134/S0362119713070189

Hemodynamic effects of midodrine after spaceflight in astronauts without orthostatic hypotension

by cfynanon 9 June 2015in Biology & Biotechnology No comment

INTRODUCTION: Orthostatic hypotension and presyncope are common and potentially serious risks for astronauts returning from space. Susceptible subjects fail to generate an adequate adrenergic response to upright posture. The alpha-1 adrenergic agonist, midodrine, may be an effective countermeasure. We tested the hypothesis that midodrine would have no negative hemodynamic effect on healthy astronauts returning from space. METHODS: Five male astronauts participated in preflight and post-flight tilt testing on a control flight as well as on the test flights, where midodrine (10 mg, orally) was administered after landing approximately 1 h before testing. RESULTS: None of these astronauts exhibited orthostatic hypotension or presyncope before or after either flight. Midodrine did not cause any untoward reactions in these subjects before or after flight; in fact, a modest beneficial effect was seen on postflight tachycardia (p = 0.036). DISCUSSION: These data show that midodrine protected against post-spaceflight increases in heart rate without having any adverse hemodynamic effects on non-presyncopal, male astronauts. Among these subjects, midodrine was a safe cardiovascular countermeasure.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/16676655

Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Acute weightlessness in space induces a fluid shift leading to central volume expansion. Simultaneously, blood pressure is either unchanged or decreased slightly. Whether these effects persist for months in space is unclear. Twenty-four hour ambulatory brachial arterial pressures were automatically recorded at 1–2 h intervals with portable equipment in eight male astronauts: once before launch, once between 85 and 192 days in space on the International Space Station and, finally, once at least 2 months after flight. During the same 24 h, cardiac output (rebreathing method) was measured two to five times (on the ground seated), and venous blood was sampled once (also seated on the ground) for determination of plasma catecholamine concentrations. The 24 h average systolic, diastolic and mean arterial pressures (mean ± se) in space were reduced by 8 ± 2 mmHg (P = 0.01; ANOVA), 9 ± 2 mmHg (P < 0.001) and 10 ± 3 mmHg (P = 0.006), respectively. The nightly blood pressure dip of 8 ± 3 mmHg (P = 0.015) was maintained. Cardiac stroke volume and output increased by 35 ± 10% and 41 ± 9% (P < 0.001); heart rate and catecholamine concentrations were unchanged; and systemic vascular resistance was reduced by 39 ± 4% (P < 0.001). The increase in cardiac stroke volume and output is more than previously observed during short duration flights and might be a precipitator for some of the vision problems encountered by the astronauts. The spaceflight vasodilatation mechanism needs to be explored further.

Related URLs:
http://dx.doi.org/10.1113/jphysiol.2014.284869

  • 1
  • 2
  • 3
  • »

Researcher Interviews

No items found

Projects in Flight

  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS