Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Cell Differentiation

Impaired osteoblastogenesis potential of progenitor cells in skeletal unloading is associated with alterations in angiogenic and energy metabolism profile

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Skeletal unloading provokes bone loss. These bone alterations have been shown to be associated with impairment of osteoblastic activity. In the present study, we evaluated the effect of skeletal unloading on bone marrow progenitor cells, for exploration of the underlying mechanism. Wistar rats were randomized to be either hindlimb unloaded for 9 days or to act as controls. Micro-CT was used to detect tibial trabecular architecture changes in response to skeletal unloading. Microgravity conditions for 9 days resulted in a decreased number and an increased spacing of the bone trabeculae in the proximal tibia. The proliferative capacity of the femoral bone marrow samples was assessed (fibroblast-colony-forming assay). By using qPCR, the expression of selected markers of vascularization (Vegfa; Hif1a; Angpt1), energy metabolism (Prkaa2; Mtor), bone formation (Runx2; Alp; Bglap; Bmp2; Bmp4; Bmp7) and bone resorption (Acp5; Tnfsf11; Tnfrsf11b) in these bone marrow suspensions was measured. We demonstrated a striking decrease in the number of fibroblastic progenitors in response to hindlimb unloading. This deficit in proliferation was shown to be accompanied by altered hindlimb perfusion and cellular energy homeostasis. Ex vivo culture assays of the bone marrow-derived progenitor cells screened for osteogenic (Runx2; Alp; Bglap) and adipogenic (Pparg; Fabp4) differentiation alterations in response to microgravity. Induced progenitor cells from unloaded rats showed a delay in osteogenic differentiation and impaired adipogenic differentiation compared to control. The data of this multi-level approach demonstrate that skeletal unloading significantly affects the bone tissue and its metabolism at the progenitor stage. The molecular expressions of the bone marrow population support a role of cellular metabolic stresses in skeletal alterations induced by inactivity.

Related URLs:
<Go to ISI>://WOS:000306372100004

Human Elastic Cartilage Engineering from Cartilage Progenitor Cells Using Rotating Wall Vessel Bioreactor

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Transplantation of bioengineered elastic cartilage is considered to be a promising approach for patients with craniofacial defects. We have previously shown that human ear perichondrium harbors a population of cartilage progenitor cells (CPCs). The aim of this study was to examine the use of a rotating wall vessel (RWV) bioreactor for CPCs to engineer 3-D elastic cartilage in vitro. Human CPCs isolated from ear perichondrium were expanded and differentiated into chondrocytes under 2-D culture conditions. Fully differentiated CPCs were seeded into recently developed pC-HAp/ChS (porous material consisted of collagen, hydroxyapatite, and chondroitinsulfate) scaffolds and 3-D cultivated utilizing a RWV bioreactor. 3-D engineered constructs appeared shiny with a yellowish, cartilage-like morphology. The shape of the molded scaffold was maintained after RWV cultivation. Hematoxylin and eosin staining showed engraftment of CPCs inside pC-HAp/ChS. Alcian blue and Elastica Van Gieson staining showed of proteoglycan and elastic fibers, which are unique extracellular matrices of elastic cartilage. Thus, human CPCs formed elastic cartilage-like tissue after 3-D cultivation in a RWV bioreactor. These techniques may assist future efforts to reconstruct complicate structures composed of elastic cartilage in vitro.

Related URLs:
<Go to ISI>://WOS:000304240400095

The effects of space flight and microgravity on the growth and differentiation of PICM-19 pig liver stem cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The PICM-19 pig liver stem cell line was cultured in space for nearly 16 d on the STS-126 mission to assess the effects of spaceflight on the liver's parenchymal cells-PICM-19 cells to differentiate into either monolayers of fetal hepatocytes or 3-dimensional bile ductules (cholangiocytes). Semi-quantitative data included light microscopic assessments of final cell density, cell morphology, and response to glucagon stimulation and electron microscopic assessment of the cells' ultrastructural features and cell-to-cell connections and physical relationships. Quantitative assessments included assays of hepatocyte detoxification functions, i.e., inducible P450 activities and urea production and quantitation of the mRNA levels of several liver-related genes. Three post-passage age groups were included: 4-d-, 10-d-, and 14-d-old cultures. In comparing flight vs. ground-control cultures 17 h after the space shuttle's return to earth, no differences were found between the cultures with the exception being that some genes were differentially expressed. By light microscopy both young and older cultures, flight and ground, had grown and differentiated normally in the Opticell culture vessels. The PICM-19 cells had grown to approximately 75% confluency, had few signs of apoptosis or necrosis, and had either differentiated into monolayer patches of hepatocytes with biliary canaliculi visible between the cells or into 3-dimensional bile ductules with well-defined lumens. Ultrastructural features between flight and ground were similar with the PICM-19 cells displaying numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies, and occasional lipid vacuoles. Cell-to-cell arrangements were typical in both flight and ground-control samples; biliary canaliculi were well-formed between the PICM-19 cells, and the cells were sandwiched between the STO feeder cells. PICM-19 cells displayed inducible P450 activities. They produced urea in a glutamine-free medium and produced more urea in response to ammonia. The experiment's aim to gather preliminary data on the PICM-19 cell line's suitability as an in vitro model for assessments of liver function in microgravity was demonstrated, and differences between flight and ground-control cultures were minor.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=20333478
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:20333478&id=doi:10.1007%2Fs11626-010-9302-6&issn=1071-2690&isbn=&volume=46&issue=6&spage=502&pages=502-15&date=2010&title=In+Vitro+Cellular+%26+Developmental+Biology.+Animal&atitle=The+effects+of+space+flight+and+microgravity+on+the+growth+and+differentiation+of+PICM-19+pig+liver+stem+cells.&aulast=Talbot&pid=%3Cauthor%3ETalbot+NC%3C%2Fauthor%3E&%3CAN%3E20333478%3C%2FAN%3E

Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption

by cfynanon 9 June 2015in Biology & Biotechnology No comment

During space flight, severe losses of bone mass are observed. Both bone formation and resorption are probably involved, but their relative importance remains unclear. The purpose of this research is to understand the role of osteoclasts and their precursors in microgravity-induced bone loss. Three experiments on isolated osteoclasts (OCs) and on their precursors, OSTEO, OCLAST, and PITS, were launched in the FOTON-M3 mission. The OSTEO experiment was conducted for 10 d in microgravity within bioreactors with a perfusion system, where the differentiation of precursors, cultured on a synthetic 3-dimensional bonelike biomaterial, skelite, toward mature OCs was assessed. In OCLAST and in PITS experiments, differentiated OCs were cultured on devitalized bovine bone slices for 4 d in microgravity. All of the experiments were replicated on ground in the same bioreactors, and OCLAST also had an inflight centrifuge as a control. Gene expression in microgravity, compared with ground controls, demonstrated a severalfold increase in genes involved in osteoclast maturation and activity. Increased bone resorption, proved by an increased amount of collagen telopeptides released VS ground and centrifuge control, was also found. These results indicate for the first time osteoclasts and their precursors as direct targets for microgravity and mechanical forces.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19329761
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:19329761&id=doi:10.1096%2Ffj.08-127951&issn=0892-6638&isbn=&volume=23&issue=8&spage=2549&pages=2549-54&date=2009&title=FASEB+Journal&atitle=Microgravity+during+spaceflight+directly+affects+in+vitro+osteoclastogenesis+and+bone+resorption.&aulast=Tamma&pid=%3Cauthor%3ETamma+R%3C%2Fauthor%3E&%3CAN%3E19329761%3C%2FAN%3E

Simulated spaceflight produces a rapid and sustained loss of osteoprogenitors and an acute but transitory rise of osteoclast precursors in two genetic strains of mice

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Shahnazari M, Kurimoto P, Boudignon BM, Orwoll BE, Bikle DD, Halloran BP. Simulated spaceflight produces a rapid and sustained loss of osteoprogenitors and an acute but transitory rise of osteoclast precursors in two genetic strains of mice. Am J Physiol Endocrinol Metab 303: E1354-E1362, 2012. First published October 9, 2012; doi:10.1152/ajpendo.00330.2012.-Loss of skeletal weight bearing or skeletal unloading as occurs during spaceflight inhibits bone formation and stimulates bone resorption. These are associated with a decline in the osteoblast (Ob.S/BS) and an increase in the osteoclast (Oc.S/BS) bone surfaces. To determine the temporal relationship between changes in the bone cells and their marrow precursor pools during sustained unloading, and whether genetic background influences these relationships, we used the hindlimb unloading model to induce bone loss in two strains of mice known to respond to load and having significantly different cancellous bone volumes (C57BL/6 and DBA/2 male mice). Skeletal unloading caused a progressive decline in bone volume that was accompanied by strain-specific changes in Ob.S/BS and Oc.S/BS. These were associated with a sustained reduction in the osteoprogenitor population and a dramatic but transient increase in the osteoclast precursor pool size in both strains. The results reveal that bone adaptation to skeletal unloading involves similar rapid changes in the osteoblast and osteoclast progenitor populations in both strains of mice but striking differences in Oc.S/BS dynamics, BFR, and cancellous bone structure. These strain-specific differences suggest that genetics plays an important role in determining the osteoblast and osteoclast populations on the bone surface and the dynamics of bone loss in response to skeletal unloading.

Related URLs:
<Go to ISI>://WOS:000312126800008

Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

OBJECTIVE: Migration, proliferation, and differentiation of bone marrow (BM) hematopoietic stem cells (HSC) are important factors in maintaining hematopoietic homeostasis. Homeostatic control of erythrocytes and lymphocytes is perturbed in humans exposed to microgravity (micro-g), resulting in space flight-induced anemia and immunosuppression. We sought to determine whether any of these anomalies can be explained by micro-g-induced changes in migration, proliferation, and differentiation of human BM CD34+ cells, and whether such changes can begin to explain any of the shifts in hematopoietic homeostasis observed in astronauts. MATERIALS AND METHODS: BM CD34+ cells were cultured in modeled micro-g (mmicro-g) using NASA's rotating wall vessels (RWV), or in control cultures at earth gravity for 2 to 18 days. Cells were harvested at different times and CD34+ cells assessed for migration potential, cell-cycle kinetics and regulatory proteins, and maturation status. RESULTS: Culture of BM CD34+ cells in RWV for 2 to 3 days resulted in a significant reduction of stromal cell-derived factor 1 (SDF-1alpha)-directed migration, which correlated with decreased expression of F-actin. Modeled micro-g induced alterations in cell-cycle kinetics that were characterized by prolonged S phase and reduced cyclin A expression. Differentiation of primitive CD34+ cells cultured for 14 to 18 days in RWV favored myeloid cell development at the expense of erythroid development, which was significantly reduced compared to controls. CONCLUSIONS: These results illustrate that mmicro-g significantly inhibits the migration potential, cell-cycle progression, and differentiation patterns of primitive BM CD34+ cells, which may contribute to some of the hematologic abnormalities observed in humans during space flight.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed6&AN=2004352574
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1016%2Fj.exphem.2004.03.014&issn=0301-472X&isbn=&volume=32&issue=8&spage=773&pages=773-781&date=2004&title=Experimental+Hematology&atitle=Impact+of+modeled+microgravity+on+migration%2C+differentiation%2C+and+cell+cycle+control+of+primitive+human+hematopoietic+progenitor+cells&aulast=Plett&pid=%3Cauthor%3EPlett+P.A.%3C%2Fauthor%3E&%3CAN%3E2004352574%3C%2FAN%3E

Reduced cycling, migration and progenitor production of bone marrow CD34+cells cultured in modeled microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

OBJECTIVE: Migration, proliferation, and differentiation of bone marrow (BM) hematopoietic stem cells (HSC) are important factors in maintaining hematopoietic homeostasis. Homeostatic control of erythrocytes and lymphocytes is perturbed in humans exposed to microgravity (micro-g), resulting in space flight-induced anemia and immunosuppression. We sought to determine whether any of these anomalies can be explained by micro-g-induced changes in migration, proliferation, and differentiation of human BM CD34+ cells, and whether such changes can begin to explain any of the shifts in hematopoietic homeostasis observed in astronauts. MATERIALS AND METHODS: BM CD34+ cells were cultured in modeled micro-g (mmicro-g) using NASA's rotating wall vessels (RWV), or in control cultures at earth gravity for 2 to 18 days. Cells were harvested at different times and CD34+ cells assessed for migration potential, cell-cycle kinetics and regulatory proteins, and maturation status. RESULTS: Culture of BM CD34+ cells in RWV for 2 to 3 days resulted in a significant reduction of stromal cell-derived factor 1 (SDF-1alpha)-directed migration, which correlated with decreased expression of F-actin. Modeled micro-g induced alterations in cell-cycle kinetics that were characterized by prolonged S phase and reduced cyclin A expression. Differentiation of primitive CD34+ cells cultured for 14 to 18 days in RWV favored myeloid cell development at the expense of erythroid development, which was significantly reduced compared to controls. CONCLUSIONS: These results illustrate that mmicro-g significantly inhibits the migration potential, cell-cycle progression, and differentiation patterns of primitive BM CD34+ cells, which may contribute to some of the hematologic abnormalities observed in humans during space flight.

Related URLs:
<Go to ISI>://WOS:000179184800656

Shifts in bone marrow cell phenotypes caused by spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bone marrow cells were isolated from the humeri of C57BL/6 mice after a 13-day flight on the space shuttle Space Transportation System (STS)-118 to determine how spaceflight affects differentiation of cells in the granulocytic lineage. We used flow cytometry to assess the expression of molecules that define the maturation/activation state of cells in the granulocytic lineage on three bone marrow cell subpopulations. These molecules included Ly6C, CD11b, CD31 (platelet endothelial cell adhesion molecule-1), Ly6G (Gr-1), F4/80, CD44, and c-Fos. The three subpopulations were small agranular cells [region (R)1], larger granular cells (R2), which were mostly neutrophils, and very large, very granular cells (R3), which had properties of macrophages. Although there were no composite phenotypic differences between total bone marrow cells isolated from spaceflight and ground-control mice, there were subpopulation differences in Ly6C (R1 and R3), CD11b (R2), CD31 (R1, R2, and R3), Ly6G (R3), F4/80 (R3), CD44(high) (R3), and c-Fos (R1, R2, and R3). In particular, the elevation of CD11b in the R2 subpopulation suggests neutrophil activation in response to landing. In addition, decreases in Ly6C, c-Fos, CD44(high), and Ly6G and an increase in F4/80 suggest that the cells in the bone marrow R3 subpopulation of spaceflight mice were more differentiated compared with ground-control mice. The presence of more differentiated cells may not pose an immediate risk to immune resistance. However, the reduction in less differentiated cells may forebode future consequences for macrophage production and host defenses. This is of particular importance to considerations of future long-term spaceflights.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19056998
http://jap.physiology.org/content/jap/106/2/548.full.pdf

Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The goal of this study was to determine the effects of hindlimb unloading (HU) on the ex vivo growth and the osteogenic potential of mesenchymal stem cells (MSCs) from the femurs of rats. Microgravity was simulated by 28-day HU in male Sprague-Dawley (SD) rats, and the bone marrow (BM) was collected from hindlimb femurs of HU or control (CTL) rats. MSCs were isolated from BM and cultured for eight passages. Then MSCs at passages 2, 4, and 8 were induced for osteogenesis or adipogenesis. The results revealed that HU decreased the osteogenic potential of MSCs and also decreased the expression of osteoblast gene marker mRNAs in cells induced by osteogenic conditions. Meanwhile, the expression of Runx2 mRNA and the phosphorylation of ERK were also decreased. There were no significant differences of osteoblast gene marker and Runx2 mRNA expression between cells induced from different passages of MSCs in UH rats. Under adipogenic conditions, HU increased both the adipogenic potential of MSCs and the expression of adipocytic gene marker mRNAs in induced cells. HU also increased the expression of PPAR gamma 2 mRNA, but with no effect on the phosphorylation of p38MAPK. The adipogenic potential of MSCs and the expression of adipocytic gene marker mRNAs in induced cells decreased along with cell cultures under normal gravity. This suggests that the normal gravity during in vitro MSC culture and the centrifugal force produced during cell harvest after each passage could decrease the adipogenic potential of MSCs, but could not reverse the effect of HU on the osteogenic potential of MSCs.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed8&AN=2008439245
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1089%2Fscd.2008.0254&issn=1547-3287&isbn=&volume=17&issue=4&spage=795&pages=795-804&date=2008&title=Stem+Cells+and+Development&atitle=Effects+of+hindlimb+unloading+on+ex+vivo+growth+and+osteogenic%2Fadipogenic+potentials+of+bone+marrow-derived+mesenchymal+stem+cells+in+rats&aulast=Pan&pid=%3Cauthor%3EPan+Z.%3C%2Fauthor%3E&%3CAN%3E2008439245%3C%2FAN%3E

RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Spaceflight, aging, and disuse lead to reduced BMD. This study shows that overexpression of constitutively active RhoA restores actin cytoskeletal arrangement, enhances the osteoblastic phenotype, and suppresses the adipocytic phenotype of human mesenchymal stem cells cultured in modeled microgravity. INTRODUCTION: Reduced BMD during spaceflight is partly caused by reduced bone formation. However, mechanisms responsible for this bone loss remain unclear. We have previously shown reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells (hMSCs) cultured in modeled microgravity (MMG). The small GTPase, RhoA, regulates actin stress fiber formation and has been implicated in the lineage commitment of hMSCs. We examined the effects of MMG on actin cytoskeletal organization and RhoA activity and the ability of constitutively active RhoA to reverse these effects. MATERIALS AND METHODS: hMSCs were seeded onto plastic microcarrier beads at a density of 10(6) and allowed to form aggregates in DMEM containing 10% FBS for 7 days. Aggregates were incubated in DMEM containing 2% FBS for 6 h with or without an adenoviral vector containing constitutively active RhoA at a multiplicity of infection (moi) of 500 and allowed to recover in 10% FBS for 24 h. Cells were transferred to the rotary cell culture system to model microgravity or to be maintained at normal gravity for 7 days in DMEM, 10% FBS, 10 nM dexamethasone, 10 mM beta-glycerol phosphate, and 50 muM ascorbic acid 2-phosphate. RESULTS: F-actin stress fibers are disrupted in hMSCs within 3 h of initiation of MMG and are completely absent by 7 days, whereas monomeric G-actin is increased. Because of the association of G-actin with lipid droplets in fat cells, the observed 310% increase in intracellular lipid accumulation in hMSCs cultured in MMG was not unexpected. Consistent with these changes in cellular morphology, 7 days of MMG significantly reduces RhoA activity and subsequent phosphorylation of cofilin by 88+/-2% and 77+/-9%, respectively. Importantly, introduction of an adenoviral construct expressing constitutively active RhoA reverses the elimination of stress fibers, significantly increases osteoblastic gene expression of type I collagen, alkaline phosphatase, and runt-related transcription factor 2, and suppresses adipocytic gene expression of leptin and glucose transporter 4 in hMSCs cultured in MMG. CONCLUSION: Suppression of RhoA activity during MMG represents a novel mechanism for reduced osteoblastogenesis and enhanced adipogenesis of hMSCs.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed7&AN=2005432701
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1359%2FJBMR.050611&issn=0884-0431&isbn=&volume=20&issue=10&spage=1858&pages=1858-1866&date=2005&title=Journal+of+Bone+and+Mineral+Research&atitle=RhoA+and+cytoskeletal+disruption+mediate+reduced+osteoblastogenesis+and+enhanced+adipogenesis+of+human+mesenchymal+stem+cells+in+modeled+microgravity&aulast=Meyers&pid=%3Cauthor%3EMeyers+V.E.%3C%2Fauthor%3E&%3CAN%3E2005432701%3C%2FAN%3E

  • «
  • 1
  • 2
  • 3
  • 4
  • »

Researcher Interviews

No items found

Projects in Flight

  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS