Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: CL

Interim Results from the Capillary Flow Experiment Aboard ISS: The Moving Contact Line Boundary Condition

by cfynanon 9 June 2015in Physical Sciences No comment

This paper highlight the in-flight operations of the Capillary Flow Experiment Contact Line experiments (2 each) performed aboard the International Space Station (ISS) during the period between Increment 9 ad 13 (8/2004-9/2006). The CFE-CL vessels are simple fluid interface experiments that probe the uncertain impact of the boundary condition at the contact line – the region where liquid, gas, and solid meet. This region controls perhaps the most significant static and dynamic characteristics of the large length scale capillary phenomena critical to most multiphase fluid management systems aboard spacecraft. Difference in fluid behavior of nearly identical statics interfaces to nearly identical disturbances are attributed to differences in fluid physics in the vicinity of the contact line. The CFE-CL experiments are conducted on five occasions by ISS Astronauts M. Fincke, W. McArthur, and J. Williams. The number of tests performed including additional science experiments is made possible by various centrifuge techniques employed by the astronauts permitting the re-use of the once-wetted container. Several of these ‘extra science’ experiments are briefly described herein. Intermittent real-time video and audio downlink, continuous communication with the ground crews at NASA JSC, MSGFC and GRC, and the clear and entreating commentary of the crew made the conduct of the tests on ISS an enjoyable, laboratory-like experience for the science on the ground. The flight tapes from the onboard cameras have been results to Earth (name flight) and are expected to be digitized, reduced and made publically available in the near future. A concurrent blind numerical analysis is underway to predict the experiments result using a generally accepted CFD-tool with specific contact line boundary conditions.

Related URLs:
http://dx.doi.org/10.2514/6.2007-747

The Capillary Flow Experiments Aboard ISS: Moving Contact Line Experiments and Numerical Analysis

by cfynanon 9 June 2015in Physical Sciences No comment

This paper serves as a first presentation of quantitative data reduced from the Capillary Flow Contact Line Experiments recently completed aboard the International Space Station during Expeditions 9-16, 8/2004-11/2007. The simple fluid interface experiments probe the uncertain impact of the boundary condition at the contact line—the region where liquid, gas, and solid meet. This region controls perhaps the most significant static and dynamic characteristics of the large length scale capillary phenomena critical to most multiphase fluids management systems aboard spacecraft. Differences in fluid behavior of nearly identical static interfaces to nearly identical perturbations are attributed primarily to differences in fluid physics in the vicinity of the contact line. Free and pinned contact lines, large and small contact angles, and linear and nonlinear perturbations are tested for a variety of perturba- tion types (i.e. axial, slosh, and other modes) to right circular cylinders. The video and digi- tized datasets are to be made publicly available for model benchmarking. In parallel with the experimental effort, blind numerical predictions of the dynamic interface response to the experimentally applied input perturbations are offered as a demonstration of current capa- bilities to predict such phenomena. The agreement and lack of agreement between the experiments and numerics is our best guide to improve and/or verify current analytical methods to predict such phenomena critical to spacecraft fluid systems design.

Related URLs:
http://dx.doi.org/10.2514/6.2008-816

Researcher Interviews

No items found

Projects in Flight

  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS