Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Contact angle

Systems and methods for separating a multiphase fluid

by cfynanon 9 June 2015in Physical Sciences No comment

Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.

Related URLs:
https://www.google.com/patents/US7905946

The Capillary Flow Experiments Aboard ISS: Moving Contact Line Experiments and Numerical Analysis

by cfynanon 9 June 2015in Physical Sciences No comment

This paper serves as a first presentation of quantitative data reduced from the Capillary Flow Contact Line Experiments recently completed aboard the International Space Station during Expeditions 9-16, 8/2004-11/2007. The simple fluid interface experiments probe the uncertain impact of the boundary condition at the contact line—the region where liquid, gas, and solid meet. This region controls perhaps the most significant static and dynamic characteristics of the large length scale capillary phenomena critical to most multiphase fluids management systems aboard spacecraft. Differences in fluid behavior of nearly identical static interfaces to nearly identical perturbations are attributed primarily to differences in fluid physics in the vicinity of the contact line. Free and pinned contact lines, large and small contact angles, and linear and nonlinear perturbations are tested for a variety of perturba- tion types (i.e. axial, slosh, and other modes) to right circular cylinders. The video and digi- tized datasets are to be made publicly available for model benchmarking. In parallel with the experimental effort, blind numerical predictions of the dynamic interface response to the experimentally applied input perturbations are offered as a demonstration of current capa- bilities to predict such phenomena. The agreement and lack of agreement between the experiments and numerics is our best guide to improve and/or verify current analytical methods to predict such phenomena critical to spacecraft fluid systems design.

Related URLs:
http://dx.doi.org/10.2514/6.2008-816

Researcher Interviews

No items found

Projects in Flight

  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS