Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: cytology

Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station

by cfynanon 9 June 2015in Technology Development & Demonstration No comment

A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/24339248

Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana

by cfynanon 9 June 2015in Biology & Biotechnology No comment

PREMISE OF THE STUDY: Gravity has been a major force throughout the evolution of terrestrial organisms, and plants have developed exquisitely sensitive, regulated tropisms and growth patterns that are based on the gravity vector. The nullified gravity during spaceflight allows direct assessment of gravity roles. The microgravity environments provided by the Space Shuttle and International Space Station have made it possible to seek novel insights into gravity perception at the organismal, tissue, and cellular levels. Cell cultures of Arabidopsis thaliana perceive and respond to spaceflight, even though they lack the specialized cell structures normally associated with gravity perception in intact plants; in particular, genes for a specific subset of heat shock proteins (HSPs) and factors (HSFs) are induced. Here we ask if similar changes in HSP gene expression occur during nonspaceflight changes in gravity stimulation. METHODS: Quantitative RT-qPCR was used to evaluate mRNA levels for Hsp17.6A and Hsp101 in cell cultures exposed to four conditions: spaceflight (mission STS-131), hypergravity (centrifugation at 3 g or 16 g), sustained two-dimensional clinorotation, and transient milligravity achieved on parabolic flights. KEY RESULTS: We showed that HSP genes were induced in cells only in response to sustained clinorotation. Transient microgravity intervals in parabolic flight and various hypergravity conditions failed to induce HSP genes. CONCLUSIONS: We conclude that nondifferentiated cells do indeed sense their gravity environment and HSP genes are induced only in response to prolonged microgravity or simulated microgravity conditions. We hypothesize that HSP induction upon microgravity indicates a role for HSP-related proteins in maintaining cytoskeletal architecture and cell shape signaling.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23258370
http://www.amjbot.org/content/100/1/235.full.pdf

MIZ1, an essential protein for root hydrotropism, is associated with the cytoplasmic face of the endoplasmic reticulum membrane in Arabidopsis root cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

MIZ1 is encoded by a gene essential for root hydrotropism in Arabidopsis. To characterize the property of MIZ1, we used transgenic plants expressing GFP-tagged MIZ1 (MIZ1-GFP) and mutant MIZ1 (MIZ1(G235E)-GFP) in a miz1-1 mutant. Although both chimeric genes were transcribed, the translational products of MIZ1(G235E)-GFP did not accumulate in roots. Moreover, MIZ1-GFP complemented the mutant phenotype but not MIZ1(G235E)-GFP. The signal corresponding to MIZ1-GFP was detected at high levels in cortical cells and lateral root cap cells and accumulated in compartments in cortical cells. MIZ1-GFP was fractionated into a soluble protein fraction and an endoplasmic reticulum (ER) membrane fraction, where it was bound to the surface of the ER membrane at the cytosolic side.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/22285304

Gravitational field-flow fractionation of human hemopoietic stem cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

New cell sorting methodologies, which are simple, fast, non-invasive, and able to isolate homogeneous cell Populations, are needed for applications ranging from gene expression analysis to cell-based therapy. In particular, in the forefront of stem cell isolation, progenitor cells have to be separated under mild experimental conditions from complex heterogeneous mixtures prepared from human tissues. Most of the methodologies now employed make use of immunological markers. However, it is widely acknowledged that specific markers for pluripotent stein cells are not as yet available, and cell labelling may interfere with the differentiation process. This work presents for the first time gravitational field-flow fractionation (GrFFF), as a tool for tag-less, direct selection of human hematopoietic stein and progenitor cells from cell samples obtained by peripheral blood aphaeresis. These cells are responsible to repopulate the hemopoietic system and they are used in transplantation therapies. Blood aphaeresis sample were injected into a GrFFF system and collected fractions were characterized by flow cytometry for CD34 and CD45 expression, and then tested for viability and multi-differentiation potential. The developed GrFFF method allowed obtaining high enrichment levels of viable, multi-potent hematopoietic stem cells in specific fraction and it showed to fulfil major requirements of analytical performance, such as selectivity and reproducibility of the fractionation process and high sample recovery. (C) 2009 Elsevier B.V. All rights reserved.

Related URLs:
<Go to ISI>://WOS:000272781200008

Changes in monocyte functions of astronauts

by cfynanon 9 June 2015in Biology & Biotechnology No comment

As part of the systematic evaluation of the innate immune system for long duration missions, this study focused on the antimicrobial functions of monocytes in astronauts participating in spaceflight. The study included four space shuttle missions and 25 astronauts. Nine non-astronauts served as controls. Blood specimens were collected 10 days before launch, within 3h after landing, and again 3 days after landing. The number of monocytes did not differ significantly over the interval sampled in both the astronaut or control groups. However, following 5-11 days of spaceflight, the astronauts' monocytes exhibited reductions in ability to engulf Escherichia coli, elicit an oxidative burst, and degranulate. The phagocytic index was significantly reduced following spaceflight when compared to control values. This reduction in phagocytosis was accompanied by changes in the expression of two surface markers involved in phagocytosis, CD32 and CD64. Levels of cortisol, epinephrine, and norepinephrine after spaceflight did not increase over preflight values.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/15908177

Skeletal muscle adaptations to microgravity exposure in the mouse

by cfynanon 9 June 2015in Biology & Biotechnology No comment

To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/12882990

The effect of spaceflight on growth of Ulocladium chartarum colonies on the international space station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23637980

Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space. To test this possibility, we exposed 16-week-old female C57BL/6J mice (n = 8) to microgravity for 15-days on the STS-131 space shuttle mission. Analysis of the pelvis by microCT shows decreases in bone volume fraction (BV/TV) of 6.29%, and bone thickness of 11.91%. TRAP-positive osteoclast-covered trabecular bone surfaces also increased in microgravity by 170% (p = 0.004), indicating osteoclastic bone degeneration. High-resolution X-ray nanoCT studies revealed signs of lacunar osteolysis, including increases in cross-sectional area (+17%, p = 0.022), perimeter (+14%, p = 0.008), and canalicular diameter (+6%, p = 0.037). Expression of matrix metalloproteinases (MMP) 1, 3, and 10 in bone, as measured by RT-qPCR, was also up-regulated in microgravity (+12.94, +2.98 and +16.85 fold respectively, p<0.01), with MMP10 localized to osteocytes, and consistent with induction of osteocytic osteolysis. Furthermore, expression of CDKN1a/p21 in bone increased 3.31 fold (p<0.01), and was localized to osteoblasts, possibly inhibiting the cell cycle during tissue regeneration as well as conferring apoptosis resistance to these cells. Finally the apoptosis inducer Trp53 was down-regulated by -1.54 fold (p<0.01), possibly associated with the quiescent survival-promoting function of CDKN1a/p21. In conclusion, our findings identify the pelvic and femoral region of the mouse skeleton as an active site of rapid bone loss in microgravity, and indicate that this loss is not limited to osteoclastic degradation. Therefore, this study offers new evidence for microgravity-induced osteocytic osteolysis, and CDKN1a/p21-mediated osteogenic cell cycle arrest.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23637819
http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0061372&representation=PDF

Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Experiments with rats flown in space or hind limb unloaded (HU) indicate that bone loss in both conditions is associated with a decrease in bone volume and osteoblast surface in cancellous and cortical bone. We hypothesize that the decrease in osteoblastic bone formation and osteoblast surface is related to a decrease in the number of osteoprogenitors and/or decreased proliferation of their progeny. We tested this hypothesis by evaluating the effect of 14 days of HU on the number of osteoprogenitors (osteoblast colony forming units; CFU-O), fibroblastic colony forming units (CFU-F), and alkaline phosphatase-positive CFU (CFU-AP) in cell populations derived from the proximal femur (unloaded) and the proximal humerus (normally loaded) in 6-week-old and 6-month-old rats. To confirm the effect of unloading on bone volume and structure, static histomorphometric parameters were measured in the proximal tibial metaphysis. Effects of HU on proliferation of osteoprogenitors were evaluated by measuring the size of CFU-O. HU did not affect the total number of progenitors (CFU-F) in young or adult rats in any of the cell populations. In femoral populations of young rats, HU decreased CFU-O by 71.0% and mean colony size was reduced by 20%. HU decreased CFU-AP by 31.3%. As expected, no changes in CFU-O or CFU-AP were seen in cell populations from the humerus. In femoral cell populations of adult rats, HU decreased CFU-O and CFU-AP by 16.6% and 36.6%, respectively. Again, no effects were seen in cell populations from the humerus. In 6-week-old rats, there was a greater decrease in bone volume, osteoblast number, and osteoblast surface in the proximal tibial metaphysis than that observed in adult rats. Both trabecular thickness and trabecular number were decreased in young rats but remained unaffected in adults. Neither osteoclast number nor surface was affected by unloading. Our results show that the HU-induced decrease in the number of osteoprogenitors observed in vitro parallels the effects of HU on bone volume and osteoblast number in young and old rats in vivo, suggesting that the two may be interdependent. HU also reduced CFU-O colony size in femoral populations indicating a diminished proliferative capacity of osteoblastic colonies.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=15664015
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:15664015&id=doi:&issn=8756-3282&isbn=&volume=36&issue=1&spage=173&pages=173-83&date=2005&title=Bone&atitle=Effect+of+simulated+weightlessness+on+osteoprogenitor+cell+number+and+proliferation+in+young+and+adult+rats.&aulast=Basso&pid=%3Cauthor%3EBasso+N%3C%2Fauthor%3E&%3CAN%3E15664015%3C%2FAN%3E

Researcher Interviews

No items found

Projects in Flight

  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS