Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Exercise/*physiology

Pulse transit time measured by photoplethysmography improves the accuracy of heart rate as a surrogate measure of cardiac output, stroke volume and oxygen uptake in response to graded exercise

by cfynanon 22 August 2016in Biology & Biotechnology, Technology Development & Demonstration No comment

Heart rate (HR) is a valuable and widespread measure for physical training programs, although its description of conditioning is limited to the cardiac response to exercise. More comprehensive measures of exercise adaptation include cardiac output (Q), stroke volume (SV) and oxygen uptake (VO2), but these physiological parameters can be measured only with cumbersome equipment installed in clinical settings. In this work, we explore the ability of pulse transit time (PTT) to represent a valuable pairing with HR for indirectly estimating Q, SV and VO2 non-invasively. PTT was measured as the time interval between the peak of the electrocardiographic (ECG) R-wave and the onset of the photoplethysmography (PPG) waveform at the periphery (i.e. fingertip) with a portable sensor. Fifteen healthy young subjects underwent a graded incremental cycling protocol after which HR and PTT were correlated with Q, SV and VO2 using linear mixed models. The addition of PTT significantly improved the modeling of Q, SV and VO2 at the individual level ([Formula: see text] for SV, 0.548 for Q, and 0.771 for VO2) compared to predictive models based solely on HR ([Formula: see text] for SV, 0.503 for Q, and 0.745 for VO2). While challenges in sensitivity and artifact rejection exist, combining PTT with HR holds potential for development of novel wearable sensors that provide exercise assessment largely superior to HR monitors.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25856085

Invited review: gender issues related to spaceflight: a NASA perspective

by cfynanon 9 June 2015in Biology & Biotechnology No comment

This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/11641383

WISE-2005: effect of aerobic and resistive exercises on orthostatic tolerance during 60 days bed rest in women

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Cardiovascular deconditioning after long duration spaceflight is especially challenging in women who have a lower orthostatic tolerance (OT) compared with men. We hypothesized that an exercise prescription, combining supine aerobic treadmill exercise in a lower body negative pressure (LBNP) chamber followed by 10 min of resting LBNP, three to four times a week, and flywheel resistive training every third day would maintain orthostatic tolerance (OT) in women during a 60-day head-down-tilt bed rest (HDBR). Sixteen women were assigned to two groups (exercise, control). Pre and post HDBR OT was assessed with a tilt/LBNP test until presyncope. OT time (mean +/- SE) decreased from 17.5 +/- 1.0 min to 9.1 +/- 1.5 min (-50 +/- 6%) in control group (P < 0.001) and from 19.3 +/- 1.3 min to 13.0 +/- 1.9 min (-35 +/- 7%) in exercise group (P < 0.001), with no significant difference in OT time between the two groups after HDBR (P = 0.13). Nevertheless, compared with controls post HDBR, exercisers had a lower heart rate during supine rest (mean +/- SE, 71 +/- 3 vs. 85 +/- 4, P < 0.01), a slower increase in heart rate and a slower decrease in stroke volume over the course of tilt/LBNP test (P < 0.05). Blood volume (mean +/- SE) decreased in controls (-9 +/- 2%, P < 0.01) but was maintained in exercisers (-4 +/- 3%, P = 0.17).Our results suggest that the combined exercise countermeasure did not significantly improve OT but protected blood volume and cardiovascular response to sub tolerance levels of orthostatic stress.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19247686

Muscle volume, strength, endurance, and exercise loads during 6-month missions in space

by cfynanon 9 June 2015in Biology & Biotechnology No comment

INTRODUCTION: Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. METHODS: Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. RESULTS: Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. DISCUSSION: Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/20131648

Effects of prolonged space flight on human skeletal muscle enzyme and substrate profiles

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Our primary goal was to determine the effects of 6-mo flight on the International Space Station (ISS) on selected anaerobic and aerobic enzymes, and the content of glycogen and lipids in slow and fast fibers of the soleus and gastrocnemius. Following local anesthesia, biopsies were obtained from nine ISS crew members approximately 45 days preflight and on landing day (R+0) postflight. We subdivided the crew into those who ran 200 min/wk or more (high treadmill, HT) in-flight from those who ran <100 min/wk (low treadmill, LT). In the LT group, there was a loss of lipid in soleus type I fibers, and muscle glycogen significantly increased in soleus fiber types postflight. Soleus cytochrome oxidase (CO) activity was significantly depressed postflight in the type I fiber. This was attributed to the LT group where CO activity was reduced 59%. Otherwise, there was no change in the crew mean for type I or IIa fiber glycolytic or mitochondrial enzyme activities pre- vs. postflight in either muscle. However, two of the three HT subjects (Subjects E and H) showed significant increases in both beta-hydroxyacyl-CoA dehydrogenase and citrate synthase in the soleus type I fibers, and Subject E, exhibiting the largest increase in soleus oxidative enzymes, was the only subject to show a significant decrease in glycolytic enzyme activity. It is apparent that crew members performing adequate treadmill running can maintain calf muscle enzymes, which suggests that increased fatigue with weightlessness cannot be directly caused by a decline in muscle enzyme capacity.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23766501

Ground reaction forces during treadmill running in microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Astronauts perform treadmill exercise during long-duration space missions to counter the harmful effects of microgravity exposure upon bone, muscle, and cardiopulmonary health. When exercising in microgravity, astronauts wear a harness and bungee system that provides forces that maintain attachment to the treadmill. Typical applied forces are less than body weight. The decreased gravity-replacement force could result in differences in ground-reaction force at a given running speed when compared to those achieved in normal gravity, which could influence the adaptive response to the performed exercise.Seven astronauts (6 m/1 f) who completed approximately 6-month missions on the International Space Station (ISS) completed a preflight (1G) and multiple in-flight (0G) data collection sessions. Ground-reaction forces were measured during running at speeds of 8.0kph and greater on an instrumented treadmill in the lab and on the ISS. Ground-reaction forces in 0G were less than in 1G for a given speed depending upon the gravity-replacement force, but did increase with increased speed and gravity-replacement force. Ground-reaction forces attained in 1G during slower running could be attained by increasing running speed and/or increasing gravity-replacement forces in 0G. Loading rates in 1G, however, could not be replicated in 0G. While current gravity-replacement force devices are limited in load delivery magnitude, we recommend increasing running speeds to increase the mechanical loads applied to the musculoskeletal system during 0G treadmill exercise, and to potentially increase exercise session efficiency.

Related URLs:
http://dx.doi.org/10.1016/j.jbiomech.2014.04.034

Researcher Interviews

No items found

Projects in Flight

  • Windows On Earth
  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS