Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Fluid physics

Transition to chaotic thermocapillary convection in a half zone liquid bridge

by cfynanon 22 August 2016in Biology & Biotechnology, Physical Sciences

A series of fluid physics microgravity experiments with an enough long run time were performed in the ‘‘KIBO,’’ the Japanese Experiment Module aboard the International Space Station, to examine the transition to chaos of the thermocapillary convection in a half zone liquid bridge of silicone oil with a Prandtl number of 112. The temperature difference between the coaxial disks induced the thermocapillary-driven flow, and we experimentally demonstrated that the flow fields underwent a tran- sition from steady flow to oscillatory flow, and finally to chaotic flow with increasing temperature differ- ence. We obtained the surface temperature time series at the middle of the liquid bridge to quantitatively evaluate the transition process of the flow fields. By Fourier analysis, we further confirmed that the flow fields changed from a periodic, to a quasi-periodic, and finally to a chaotic state. The increasing nonlin- earity with the development of the flow fields was confirmed by time-series chaos analysis. The deter- mined Lyapunov exponent and the translation error indicated that the flow fields made transition to the chaotic field with the increasing temperature difference.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0017931015005323

Capillary Wetting Analysis of the CFE-Vane Gap Geometry

by cfynanon 9 June 2015in Physical Sciences No comment

The Vane Gap Capillary Flow Experiments are part of a suite of low-g experiments flown onboard the International Space Station to observe critical wetting phenomena in ‘large length scale’ capillary systems. The Vane Gap geometry consists of a right cylinder with elliptic cross-section and a single central vane that does not contact the container walls. The vane is slightly asymmetric so that two gaps between the vane and container wall are not of the same size. In this study, we identify the critical wetting conditions of this geometry using the Concus-Finn method for both perfectly and partially wetting fluids as a function of container asymmetry. In a cylindrical container in zero-g, single-valued finite height equilibrium capillary surfaces fail to exist if a critical wetting condition is satisfied. This nonexistence results in significant redistribution of the fluids in the container. It will be shown that there could be three critical geometric wetting conditions that include one in each gap region and one for a global shift of bulk fluid which, among the three, is the most significant.

Related URLs:

Instability and associated roll structure of Marangoni convection in high Prandtl number liquid bridge with large aspect ratio

by cfynanon 9 June 2015in Physical Sciences No comment

This paper reports the experimental results on the instability and associated roll structures (RSs) of Marangoni convection in liquid bridges formed under the microgravity environment on the International Space Station. The geometry of interest is high aspect ratio (AR = height/diameter ≥ 1.0) liquid bridges of high Prandtl number fluids (Pr = 67 and 207) suspended between coaxial disks heated differentially. The unsteady flow field and associated RSs were revealed with the three-dimensional particle tracking velocimetry. It is found that the flow field after the onset of instability exhibits oscillations with azimuthal mode number m = 1 and associated RSs traveling in the axial direction. The RSs travel in the same direction as the surface flow (co-flow direction) for 1.00 ≤ AR ≤ 1.25 while they travel in the opposite direction (counter-flow direction) for AR ≥ 1.50, thus showing the change of traveling directions with AR. This traveling direction for AR ≥ 1.50 is reversed to the co-flow direction when the temperature difference between the disks is increased to the condition far beyond the critical one. This change of traveling directions is accompanied by the increase of the oscillation frequency. The characteristics of the RSs for AR ≥ 1.50, such as the azimuthal mode of oscillation, the dimensionless oscillation frequency, and the traveling direction, are in reasonable agreement with those of the previous sounding rocket experiment for AR = 2.50 and those of the linear stability analysis of an infinite liquid bridge.

Related URLs:
http://scitation.aip.org/content/aip/journal/pof2/27/2/10.1063/1.4908042

Space experiment on the instability of Marangoni convection in large liquid bridge – MEIS-4: effect of Prandtl number

by cfynanon 9 June 2015in Physical Sciences No comment

Microgravity experiments on the thermocapillary convection in liquid bridge, called Marangoni Experiment in Space (MEIS), are carried out in "KIBO" of ISS. Three series of experiments, MEIS-1, 2, and 4, have been conducted so far. This paper reports the results obtained from MEIS-4, in which 20cSt silicone oil ( Pr = 207) is used to generate large liquid bridges. They are suspended between coaxial disks that are 50mm in diameter, with their maximum length equal to 62.5mm. MEIS-4 aims at (1) determining the critical temperature difference for the onset of oscillatory flow; (2) realizing high Marangoni number conditions for high Pr fluid; (3) clarifying the effects of volume ratio, heating rate, hysteresis, and cooled disk temperature; and (4) observing whether the hydrothermal wave with azimuthal mode number m = 0 appears or not. The main results are presented and compared with those obtained in MEIS-1 and 2, which utilized liquid bridges of 5cSt silicone oil ( Pr = 67).

Related URLs:
http://stacks.iop.org/1742-6596/327/i=1/a=012029

Various flow patterns in thermocapillary convection in half-zone liquid bridge of high prandtl number fluid

by cfynanon 9 June 2015in Physical Sciences No comment

Various flow patterns induced by a thermocapillary-driven convection in a half-zone liquid bridge of a high Prandtl number fluid (Pr = 0(10)) far beyond the critical condition were investigated experimentally. After the onset of oscillatory convection, one can observe several types of flow patterns with increasing a temperature difference between the both end surfaces of the bridge. The flow patterns were categorized through flow visualization, measurement of surface temperature variation and reconstruction of the pseudo-phase space.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117703902444

The capillary flow experiments aboard the International Space Station: Status

by cfynanon 9 June 2015in Physical Sciences No comment

This paper provides a current overview of the in-flight operations and experimental results of the capillary flow experiment (CFE) performed aboard the International Space Station (ISS) beginning August 2004 to present, with at least 16 operations to date by five astronauts. CFE consists of six approximately 1–2 kg experiment units designed to probe certain capillary phenomena of fundamental and applied importance, such as capillary flow in complex containers, critical wetting in discontinuous structures, and large length scale contact line dynamics. Highly quantitative video images from the simply performed experiments provide direct confirmation of the usefulness of current analytical design tools as well as provide guidance to the development of new ones. A description of the experiments, crew procedures, performances and status of the data collection and reduction is provided for the project. The specific experimental objectives are briefly introduced by way of the crew procedures and a sample of the verified theoretical predictions of the fluid behavior is provided. The potential impact of the flight experiments on the design of spacecraft fluid systems is discussed in passing.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0094576509001386

Systems and methods for separating a multiphase fluid

by cfynanon 9 June 2015in Physical Sciences No comment

Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.

Related URLs:
https://www.google.com/patents/US7905946

Preliminary Results from the Capillary Flow Experiment Aboard ISS: The Moving Contact Line Boundary Condition

by cfynanon 9 June 2015in Physical Sciences No comment

The Capillary Flow Experiment (CFE) consists of six approximately 2kg test vessels constructed by NASA to probe certain capillary phenomena of fundamental and applied importance. The light weight, low-volume hardware can be shipped to orbit on short notice as cargo space permits and the experiment performed in stand-alone mode by a single crewmember on, for example, the Maintenance Work Area (workbench) of the International Space Station. Video images from the simply performed crew procedures provide highly quantitative data for the confirmation of current analytical design tools as well as directions for further theoretical development. This paper presents a narrative of preliminary results from the first Capillary Flow Experiment (CFE) conducted aboard ISS in August-September 2004. The tests are performed as per of NASA’s Saturday Morning Science Program on ISS and completed in good order by Astronaut Michael Fincke who collected approximately 100 data sets that compare large length scale capillary surface oscillations and damping for two otherwise identical cylindrical tanks differing only in respect to a critical yet uncertain boundary condition at the contact line. Linear, nonlinear, and destabilizing slosh, swirl, axial, and other disturbances are studied. The large data set is being reduced for comparisons to the blind predication of a group of numerical analysis assembled to gauge the accuracy of present methods to predict large length scale capillary dynamics critical to fluids management in spacecraft (i.e. fuels, cryogens, water). The success of the experiment reported herein serves as a testimony to astronaut ingenuity and the perhaps surprisingly flexible fluids laboratory of the ISS for safe and simple fluids experimentation.

Related URLs:

Dynamic particle accumulation structure (PAS) in half-zone liquid bridge – Reconstruction of particle motion by 3-D PTV

by cfynanon 9 June 2015in Physical Sciences No comment

Three-dimensional (3-D) velocity field reconstruction of oscillatory thermocapillary convections in a half-zone liquid bridge with a radius of O (1 mm) was carried out by applying 3-D particle tracking velocimetry (PTV). Simultaneous observation of the particles suspended in the bridge by two CCD cameras was carried out by placing a small cubic beam splitter above a transparent top rod. The reconstruction of the 3-D trajectories and the velocity fields of the particles in the several types of oscillatory-flow regimes were conducted successfully for sufficiently long period without losing particle tracking. With this application the present authors conducted a series of experiments focusing upon the collapse and re-formation process of the PAS by mechanically disturbing fully developed PAS.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S027311770700909X

3-D Flow Measurement of Oscillatory Thermocapillary Convection in Liquid Bridge in MEIS

by cfynanon 9 June 2015in Physical Sciences No comment

Marangoni Experiment in Space (MEIS) has been conducted in the International Space Station (ISS) in order to clarify the transition processes of thermocapillary convection in liquid bridges. The use of microgravity allows us to generate long liquid bridges, 30mm in diameter and up to 60mm in length. Several flow visualization techniques have been applied to those large liquid bridges. 3-D PTV is used to reveal highly three-dimensional flow patterns that appear after the transition. Three CCD cameras are used to observe the motions of the tracer particles from different view angles through the transparent heated disk made of sapphire. Particle images are recorded in the HDD recording system in ISSand they are downloaded to the ground for data analysis. A conventional 3-D PTV technique and a newly-developed multi-frame particle tracking method are combined to obtain the results that can help better understanding of oscillatory 3-D flow fields in the liquid bridges. It is shown that the flow pattern changes from a 2-D axisymmetric steady flow to an oscillatory 3-D non-axisymmetric flow under the supercritical conditions.

Related URLs:

  • 1
  • 2
  • 3
  • 4
  • »

Researcher Interviews

No items found

Projects in Flight

  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS