As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

Research Containing: Gravity
Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes
Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene’s test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26956416
Bone metabolism and renal stone risk during International Space Station missions
Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26456109
Magnesium and Space Flight
Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 +/- 5 years old, mean +/- SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 +/- 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26670248
Effect of Microgravity on Synthesis of Nano Ceria
Cerium oxide (CeO2) was prepared using a controlled-precipitation method under microgravity at the International Space Station (ISS). For comparison, ceria was also synthesized under normal-gravity conditions (referred as control). The Brunauer-Emmett-Teller (BET) surface area, pore volume and pore size analysis results indicated that the ceria particles grown in space had lower surface area and pore volume compared to the control samples. Furthermore, the space samples had a broader pore size distribution ranging from 30–600 Å, whereas the control samples consisted of pore sizes from 30–50 Å range. Structural information of the ceria particles were obtained using TEM and XRD. Based on the TEM images, it was confirmed that the space samples were predominantly nano-rods, on the other hand, only nano-polyhedra particles were seen in the control ceria samples. The average particle size was larger for ceria samples synthesized in space. XRD results showed higher crystallinity as well as larger mean crystal size for the space samples. The effect of sodium hydroxide concentration on synthesis of ceria was also examined using 1 M and 3 M solutions. It was found that the control samples, prepared in 1 M and 3 M sodium hydroxide solutions, did not show a significant difference between the two. However, when the ceria samples were prepared in a more basic medium (3 M) under microgravity, a decrease in the particle size of the nano-rods and appearances of nano-polyhedra and spheres were observed.
Related URLs:
http://www.mdpi.com/2073-4344/5/3/1306
Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: observational study
The fractal scaling of the long-term heart rate variability (HRV) reflects the ‘intrinsic’ autonomic regulatory system. Herein, we examine how microgravity on the ISS affected the power-law scaling β (beta) of astronauts during a long-duration (about 6 months) spaceflight. Ambulatory electrocardiographic (ECG) monitoring was performed on seven healthy astronauts (5 men, 52.0 ± 4.2 years of age) five times: before launch, 24 ± 5 (F01) and 73 ± 5 (F02) days after launch, 15 ± 5 days before return (F03), and after return to Earth. The power-law scaling β was calculated as the slope of the regression line of the power density of the MEM spectrum versus frequency plotted on a log10–log10 scale in the range of 0.0001–0.01 Hz (corresponding to periods of 2.8 h to 1.6 min). β was less negative in space (−0.949 ± 0.061) than on Earth (−1.163 ± 0.075; P o 0.025). The difference was more pronounced during the awake than during the rest/sleep span. The circadian amplitude and acrophase (phase of maximum) of β did not differ in space as compared with Earth. An effect of microgravity was detected within 1 month (F01) in space and continued throughout the spaceflight. The intrinsic autonomic regulatory system that protects life under serious environmental conditions on Earth is altered in the microgravity environment, with no change over the 6-month spaceflight. It is thus important to find a way to improve conditions in space and/or in terms of human physiology, not to compromise the intrinsic autonomic regulatory system now that;plans are being made to inhabit another planet in the near future.
Related URLs:
http://www.nature.com/articles/npjmgrav201518
Microgravity Flammability of PMMA Rods in Concurrent Flow
Microgravity experiments burning cast PMMA cylindrical rods in axial flow have been conducted aboard the International Space Station in the Microgravity Science Glovebox (MSG) facility using the Burning and Suppression of Solids (BASS) flow duct, as part of the BASS-II experiment. Twenty-four concurrent-flow tests were performed, focusing on finding flammability limits as a function of oxygen and flow speed. The oxygen was varied by using gaseous nitrogen to vitiate the working volume of the MSG. The speed of the flow parallel to the rod was varied using a fan at the entrance to the duct. Both blowoff and quenching limits were obtained at several oxygen concentrations. Each experiment ignited the rod at the initially hemispherical stagnation tip of the rod, and allowed the flame to develop and heat the rod at a sufficient flow to sustain burning. For blowoff limit tests, the astronaut quickly turned up the flow to obtain extinction. Complementary 5.18-second Zero Gravity Facility drop tests were conducted to compare blowoff limits in short and long duration microgravity. For quenching tests, the flow was incrementally turned down and the flame allowed to stabilize at the new flow condition for at least the solid-phase response time before changing it again. Quenching was observed when the flow became sufficiently weak that the flame could no longer provide adequate heat flux to compensate for the heat losses (conduction into the rod and radiation). A surface energy balance is presented that shows the surface radiative loss exceeds the conductive loss into the rod near the limit. The flammability boundary is shown to represent a critical Damkohler number, expressed in terms of the reaction rate divided by the stretch rate. For the blowoff branch, the boundary exhibits a linear dependence on oxygen concentrationandstretchrate,indicatingthatthetemperatureatblowoffmustbefairlyconstant. Forthe quenching branch, the dominance of the exponential nature of the Arrhenius kinetics reaction rate indicates that the temperature is critical.
Related URLs:
https://www.researchgate.net/publication/280234405_Microgravity_Flammability_of_PMMA_Rods_in_Concurrent_Flow
Results from on-board CSA-CP and CDM Sensor Readings during the Burning and Suppression of Solids– II (BASS-II) Experiment in the Microgravity Science Glovebox (MSG)
For the first time on ISS, BASS-II utilized MSG working volume dilution with gaseous nitrogen (N2). We developed a perfectly stirred reactor model to determine the N2 flow time and flow rate to obtain the desired reduced oxygen concentration in the working volume for each test. We calibrated the model with CSA-CP oxygen readings offset using the Mass Constituents Analyzer reading of the ISS ambient atmosphere data for that day. This worked out extremely well for operations, and added a new vital variable, ambient oxygen level, to our test matrices. The main variables tested in BASS-II were ambient oxygen concentration, ventilation flow velocity, and fuel type, thickness, and geometry.;BASS-II also utilized the on-board CSA-CP for oxygen and carbon monoxide readings, and the CDM for carbon dioxide readings before and after each test. Readings from these sensors allow us to evaluate the completeness of the combustion. The oxygen and carbon dioxide readings before and after each test were analyzed and compared very well to stoichiometric ratios for a one step gas-phase reaction. The CO versus CO2 followed a linear trend for some datasets, but not for all the different geometries of fuel and flow tested. We calculated the heat release rates during each test from the oxygen consumption and burn times, using the constant 13.1 kJ of heat released per gram of oxygen consumed. The results showed that the majority of the tests had heat release rates well below 100 Watts. Lastly, the global equivalence ratio for the tests is estimated to be fuel rich: 1.3 on average using mass loss and oxygen consumption data.
Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days)
The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use;of mice and rats.
Related URLs:
http://www.nature.com/articles/npjmgrav20162
Growth of InxGa1−xSb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments
BACKGROUND: InxGa1 − xSb is an important material that has tunable properties in the infrared (IR) region and is suitable for IR-device applications. Since the quality of crystals relies on growth conditions, the growth process of alloy semiconductors can be examined better under microgravity (μG) conditions where convection is suppressed.;AIMS: To investigate the dissolution and growth process of InxGa1 − xSb alloy semiconductors via a sandwiched structure of GaSb (seed)/InSb/GaSb(feed) under normal and μG conditions.;METHODS: InxGa1 − xSb crystals were grown at the International Space Station (ISS) under μG conditions, and a similar experiment was conducted under terrestrial conditions (1G) using the vertical gradient freezing (VGF) method. The grown crystals were cut along the growth direction and its growth properties were studied. The indium composition and growth rate of grown crystals were calculated.;RESULTS: The shape of the growth interface was nearly flat under μG, whereas under 1G, it was highly concave with the initial seed interface being nearly flat and having facets at the peripheries. The quality of the μG crystals was better than that of the 1G samples, as the etch pit density was low in the μG sample. The growth rate was higher under μG compared with 1G. Moreover, the growth started at the peripheries under 1G, whereas it started throughout the seed interface under μG.;CONCLUSIONS: Kinetics played a dominant role under 1G. The suppressed convection under μG affected the dissolution and growth process of the InxGa1 − xSb alloy semiconductor.
Related URLs:
http://www.nature.com/articles/npjmgrav201511