Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        • ARISS (Amateur Radio from ISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Hematopoietic Stem Cells

Ex Vivo Expansion of Human Umbilical Cord Blood Hematopoietic Stem/Progenitor Cells with Support of Microencapsulated Rabbit Mesenchymal Stem Cells in a Rotating Bioreactor

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Expansion of human umbilical cord blood mononuclear cells (MNCs) was carried out with/without the support of alginate-chitosan-alginate (ACA) microcapsules containing rabbit bone marrow (rBM) mesenchymal stem cells (MSCs). Cells were cultured in a rotating wall vessel (RWV) bioreactor and also in tissue-culture plates using serum-free media supplemented with conventional doses of purified human recombinant cytokines for 7 days. The total nucleated cell density, pH and osmolality of the culture media in both co-culture systems were measured every 24 hours. Flow cytometry analysis of the CD34(+) population and methylcellulose colony assays for assessing the pluripotency of the population were carried out after Oh, 72h and 168h of culture. The RWV bioreactor co-culture, combined with a cell-dilution feeding protocol, was observed to be efficient in expanding UCB MNCs. By the end of 168h of culture using this system, the total nucleated cell number had grown around 107-fold, whilst the CD34(+) cells 26-fold and colony-forming units in culture 19-fold. Within RWV alone control and static co-culture control groups, however, expansions of total nucleated cell number were 52-fold and 10-fold, respectively, while CD34(+) cells and CFU-Cs numbers both changed mildly (p < 0.01, compared with RWV co-culture group). It was thus demonstrated that the expansion of HSCs can be achieved at a large-scale with the support of microencapsulated stromal cells using this bioreactor.

Related URLs:
<Go to ISI>://WOS:000291289600009

Effects of spaceflight on rat erythroid parameters

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Hematologic studies were performed on 21 ground control rats and 21 rats flown during the Spacelab Life Sciences-2 14-day mission. Group A (n = 5) was used to collect blood in flight and 9 days postflight, group B (n = 5) was injected with recombinant human erythropoietin (rhEpo), group C (n = 5) received saline as a control, and group D (n = 6) was killed in flight and tissues were collected. Results indicated no significant changes in peripheral blood erythroid elements between flight and ground control rats. The nonadherent bone marrow on flight day 13 showed a lower number of recombinant rat interleukin-3 (rrIL-3)-responsive and rrIL-3 + rhEpo-responsive blast-forming unit erythroid (BFU-e) colonies in flight rats compared with ground control rats. On landing day, a slight increase in the number of rhEpo + rrIL-3-responsive BFU-e colonies of flight animals compared with ground control rats was evident. Nine days postflight, bone marrow from flight rats stimulated with rhEpo alone or with rhEpo + rrIL-3 showed an increase in the number of colony-forming unit erythroid colonies and a decrease in BFU-e colonies compared with ground control rats. This is the first time that animals were injected with rhEpo and subsequently blood and tissues were collected during the spaceflight to study the regulation of erythropoiesis in microgravity.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=8828653
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:8828653&id=doi:&issn=8750-7587&isbn=&volume=81&issue=1&spage=117&pages=117-22&date=1996&title=Journal+of+Applied+Physiology&atitle=Effects+of+spaceflight+on+rat+erythroid+parameters.&aulast=Allebban&pid=%3Cauthor%3EAllebban+Z%3C%2Fauthor%3E&%3CAN%3E8828653%3C%2FAN%3E

Researcher Interviews

No items found

Projects in Flight

  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
  • ARISS (Amateur Radio from ISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS