Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        • ARISS (Amateur Radio from ISS)
        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Hydrothermal wave

Space experiment on the instability of Marangoni convection in large liquid bridge – MEIS-4: effect of Prandtl number

by cfynanon 9 June 2015in Physical Sciences No comment

Microgravity experiments on the thermocapillary convection in liquid bridge, called Marangoni Experiment in Space (MEIS), are carried out in "KIBO" of ISS. Three series of experiments, MEIS-1, 2, and 4, have been conducted so far. This paper reports the results obtained from MEIS-4, in which 20cSt silicone oil ( Pr = 207) is used to generate large liquid bridges. They are suspended between coaxial disks that are 50mm in diameter, with their maximum length equal to 62.5mm. MEIS-4 aims at (1) determining the critical temperature difference for the onset of oscillatory flow; (2) realizing high Marangoni number conditions for high Pr fluid; (3) clarifying the effects of volume ratio, heating rate, hysteresis, and cooled disk temperature; and (4) observing whether the hydrothermal wave with azimuthal mode number m = 0 appears or not. The main results are presented and compared with those obtained in MEIS-1 and 2, which utilized liquid bridges of 5cSt silicone oil ( Pr = 67).

Related URLs:
http://stacks.iop.org/1742-6596/327/i=1/a=012029

3-D PTV measurement of Marangoni convection in liquid bridge in space experiment

by cfynanon 9 June 2015in Physical Sciences No comment

Microgravity experiments have been conducted on the International Space Station in order to clarify the transition processes of the Marangoni convection in liquid bridges of high Prandtl number fluid. The use of microgravity allows us to generate large liquid bridges, 30 mm in diameter and up to 60 mm in length. Three-dimensional particle tracking velocimetry (3-D PTV) is used to reveal complex flow patterns that appear after the transition of the flow field to oscillatory states. It is found that a standing-wave oscillation having an azimuthal mode number equal to one appears in the long liquid bridges. For the liquid bridge 45 mm in length, the oscillation of the flow field is observed in a meridional plane of the liquid bridge, and the flow field exhibits the presence of multiple vortical structures traveling from the heated disk toward the cooled disk. Such flow behaviors are shown to be associated with the propagation of surface temperature fluctuations visualized with an IR camera. These results indicate that the oscillation of the flow and temperature field is due to the propagation of the hydrothermal waves. Their characteristics are discussed in comparison with some previous results with long liquid bridges. It is shown that the axial wavelength of the hydrothermal wave observed presently is comparable to the length of the liquid bridge and that this result disagrees with the previous linear stability analysis for an infinitely long liquid bridge.

Related URLs:
http://dx.doi.org/10.1007/s00348-011-1136-9

Hydrothermal Wave Instability in a High-Aspect-Ratio Liquid Bridge of Pr >  200

by cfynanon 9 June 2015in Physical Sciences No comment

The long-duration fluid physics experiments on a thermocapillary-driven flow have been carried out on the Japanese Experiment Module ‘Kibo’ aboard the International Space Station (ISS) since 2008. In these experiments, various aspects of thermocapillary convection in a half-zone (HZ) liquid bridge of high Prandtl number fluid have been examined under the advantages of the long-duration high-quality microgravity environment. In 2010, the authors succeeded to realize nonlinear convective fields in the HZ liquid bridge of rather high aspect ratio. Special attention was paid on to the complex convective fields, especially on the behaviors of the hydrothermal wave (HTW) over the free surface visualized by an infrared camera. In order to evaluate the characteristics of the nonlinear convective behaviors and their transition processes, the authors indicate the images taken by the infrared camera describing the time evolution of HTW, the spatio-temporal diagram, the Fourier analysis, and the pseudo-phase space, reconstructed from the time series of the scalar information of the liquid bridge, that is, surface temperature variation. In this paper, the authors introduce the signature of complex HTW behaviors observed at the long-duration on-orbit experiments, and make comparisons with some previous terrestrial and microgravity experiments.

Related URLs:
http://dx.doi.org/10.1007/s12217-012-9332-7

Researcher Interviews

No items found

Projects in Flight

  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
  • ARISS (Amateur Radio from ISS)
  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS