Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        • ARISS (Amateur Radio from ISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Ideal liquid mixture

Effects of cooling temperature on heat pipe evaporator performance using an ideal fluid mixture in microgravity

by cfynanon 22 August 2016in Physical Sciences, Technology Development & Demonstration No comment

The effect of cooling temperature on heat pipe performance has generally received little consideration. In this paper, we studied the performance of a Constrained Vapor Bubble (CVB) heat pipe using a liquid mix- ture of 94 vol%-pentane and 6 vol%-isohexane at different cooling temperatures in the microgravity envi- ronment of the International Space Station (ISS). Using a one-dimensional (1-D) heat transfer model developed in our laboratory, the heat transfer coefficient of the evaporator section was calculated and shown to decrease with increasing cooler temperature. Interestingly, the decreasing trend was not the same across the cooler settings studied in the paper. This trend corresponded with the change in the tem- perature profile along the cuvette. When the cooling temperature went from 0 to 20 C, the temperature of the cuvette decreased monotonically from the heater end to the cooler end and the heat transfer coef- ficient decreased slowly from 456 to 401 (W m 2 K 1) (at a rate of 2.75 W m 2 K 2). However, when the cooling temperature increased from 25 to 35 C, a minimum point formed in the temperature profile, and the heat transfer coefficient dramatically decreased from 355 to 236 (W m 2 K 1) (at a rate of 11.9 W m 2 K 2). A similar change in decreasing trend was observed in the pressure gradient and liquid velocity profile. The reduced heat pipe performance at high cooling temperatures was consistent with the reduced evaporation which was indicated by the decreasing internal heat transfer and the increasing liq- uid film thickness along the cuvette as seen in the surveillance images. The result obtained is important for future heat pipe design because we now have a better understanding of the working temperature ranges of these devices.

Related URLs:
https://www.researchgate.net/publication/294122088_Effects_of_Cooling_Temperature_on_Heat_Pipe_Evaporator_Performance_Using_an_Ideal_Fluid_Mixture_in_Microgravity

Researcher Interviews

No items found

Projects in Flight

  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
  • ARISS (Amateur Radio from ISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS