Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        • ARISS (Amateur Radio from ISS)
        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: ISS

Evolution of Russian Microgravity Countermeasures

by cfynanon 22 August 2016in Biology & Biotechnology No comment

INTRODUCTION: Countermeasures to prevent or partially offset the negative physiologic changes that are caused by the effects of microgravity play an important role in supporting the performance of crewmembers in flight and their safe return to Earth. Research conducted in Russia on the orbital stations Salyut and Mir, as well as simulation experiments on the ground, have demonstrated that changes that occur during extended spaceflight in various physiologic systems can be prevented or significantly decreased by using countermeasures. Hardware and techniques used on the ISS have been substantially improved to reflect the experience of previous extended missions on Russian orbital stations. Countermeasures used during early ISS missions consisted of the U.S. treadmill (TVIS), cycle ergometer (capital VE, Cyrilliccapital BE, Cyrillic-3), a set of resistance bands, a postural muscle loading suit (Penguin-3), electrical stimulator (Tonus-3), compression thigh cuffs (Braslet-capital EM, Cyrillic), a lower body negative pressure (LBNP) suit (Chibis), a lower body g-loading suit (Kentavr), and water/salt supplements. These countermeasures are described in this article.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26630193

Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-kappaB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26917741

ELITE S2 – AN INSTRUMENT FOR MOTION ANALYSIS ON BOARD THE INTERNATIONAL SPACE STATION

by cfynanon 22 August 2016in Biology & Biotechnology, Technology Development & Demonstration No comment

This paper describes the activities for utilization and control of ELITE S2 on board the International Space Station (ISS). ELITE S2 is a payload of the Italian Space Agency (ASI) for quantitative human movement analysis in weightlessness. Within the frame of a bilateral agreement with NASA, ASI has funded a number of facilities, enabling different scientific experiments on board the ISS. ELITE S2 has been developed by the ASI contractor Kayser Italia, delivered to the Kennedy Space Center in 2006 for pre-flight processing, launched in 2007 by the Space Shuttle Endeavour (STS-118), integrated in the U.S. lab and used during the Increments 16 and 17 through 2008. The ELITE S2 flight segment comprises equipment mounted into an Express Rack and a number of stowed items to be deployed for experiment performance (video cameras and accessories). The ground segment consists in a User Support Operations Center (based at Kayser Italia) enabling real-time payload control and a number of User Home Bases (located at the ASI and PIs premises), for the scientific assessment of the experiment performance. Two scientific protocols on reaching and cognitive processing have been successfully performed in five sessions involving two ISS crewmembers: IMAGINE 2 and MOVE.

Related URLs:
https://www.researchgate.net/publication/287076067_Elite_S2-an_instrument_for_motion_analysis_on_board_the_International_Space_Station

Space, the final frontier: A critical review of recent experiments performed in microgravity

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26795156

The SCD – Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mes- enchymal stem cells (BMSCs), as well as osteoblasts, osteo- cytes, and osteoclasts. The effects of microgravity on osteo- cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Pre- vious researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of opera- tive constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only par- tially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD – STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies per- formed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and stor- age of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable sam- ples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.

Related URLs:
http://link.springer.com/article/10.1007/s12217-015-9466-5

PROTEIN CRYSTALLIZATION FOR DRUG DEVELOPMENT: A Prospective Empirical Appraisal of Economic Effects of ISS Microgravity

by cfynanon 22 August 2016in Biology & Biotechnology No comment

The paper proceeds as follows. Section two below discusses the topic of protein crystallization in biomedical research as well as our current understanding regarding the contribution of microgravity in developing better quality crystals. Section three addresses possible policy intervention, also including the introduction of a government funded consortium to diffuse risk. Section four outlines a specific model that has recently been developed by RTI International, which provides an interesting quantitative framework for measuring private sector costs. The outcome of this section is essentially a list of needed data and data sources. Finally, Section five concludes.

Related URLs:
http://www.ige.unicamp.br/spec/wp-content/uploads/sites/15/2015/07/Report-NASA_Modeling-Drug-Development-and-Protein-Crystals_2015.pdf

Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26378793

EXPERIENCING SPACE BY EXPLORING THE EARTH – EASY-TO-USE IMAGE PROCESSING TOOLS IN SCHOOL LESSONS

by cfynanon 22 August 2016in Earth Science and Remote Sensing No comment

In the 1990s, a photo taken by the probe Voyager showed the Earth as a small island right in the middle of an infinite black ocean 6 billion kilometres away. A ‘Blue Marble’ turned into a ‘Pale Blue Dot’ and initiated a public discourse about a sustainable handling of our resources. Therefore, ‘Blue Dot – Shaping the Future’ became the title of the mission of Alexander Gerst’s space flight. From 28 May to 10 November 10, 2014 the ESA Astronaut fascinated the German public with his live-impressions from the International Space Station (ISS). Simultaneously, the project ‘Columbus Eye – Live-Imagery from the ISS in Schools’ established a learning portal on earth observation from the ISS (www.columbuseye.uni-bonn.de). The portal makes use of NASA’s High Definition Earth Viewing (HDEV) experiment which features four cameras observing the earth 24/7. Columbus Eye is carried out at the University of Bonn and sponsored by the German Aerospace Center (DLR) Space Administration. The main goal of Columbus Eye is to enable children to observe our planet from the astronaut’s perspective while applying professional remote sensing analysis tools. During the IAC 2014, we published a concept on how the fascination of technology and environment should be bundled in order to ignite the pupil’s interest on spaceflight and earth observation. Following up on this, in 2015 we are proud to present the implementations of this concept: the HDEV archive and, even more important, the observatory. While the archive provides spectacular footage of e.g. the Mediterranean Sea, the Himalaya, and sunrises available for everybody, the observatory was specifically constructed for pupils and teachers. Here, it is possible to learn about processes and phenomena of the coupled human- environment system in an interactive manner. The pupils can conduct easy-to-use image processing analyses on their own. In doing so, they get the opportunity to derive a map out of an HDEV image and hence turn a continuous spatial texture into a discrete spatial pattern of land uses. The presentation explains how teachers can be taught to apply the Columbus Eye learning tools in their everyday school lessons. Additionally, we present the next mission of the project: HDEV videos will be edited in order to perceive them in virtual reality. Witnessing geospatial analysis turns into experience and enters our understanding.

Related URLs:
https://www.researchgate.net/publication/282978519_Experiencing_Space_by_Exploring_the_Earth_-_Easy-to-use_Image_Processing_Tools_in_School_Lessons

Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes) involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26599415

Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography

by cfynanon 22 August 2016in Biology & Biotechnology No comment

INTRODUCTION: Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. METHODS: The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (+/- 20 degrees at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember’s ability to automatically recover from unexpected support-surface perturbations. RESULTS: The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. CONCLUSIONS: The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26630195

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • …
  • 57
  • 58
  • 59
  • »

Researcher Interviews

No items found

Projects in Flight

  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
  • ARISS (Amateur Radio from ISS)
  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS