INTRODUCTION: In this study we investigated the effects of microgravity on the fiber properties of the mouse triceps brachii, a forelimb muscle that has no antigravity function. METHODS: Mice (n = 7) were exposed to microgravity for 13 days on the space shuttle Atlantis (Space Transportation System-135). The fiber cross-sectional area (CSA) and succinate dehydrogenase (SDH) staining intensity of the triceps brachii muscle were compared with those of controls (n = 7). SDH activity in this muscle was also estimated. RESULTS: Microgravity did not affect the body weight, muscle weight, or fiber CSA, but there was reduced SDH staining intensity of all types of fibers, irrespective of the muscle region (P < 0.05). Microgravity also reduced muscle SDH activity (P < 0.05). CONCLUSIONS: Short-term exposure to microgravity induced a decrease in oxidative capacity, but not atrophy, in the triceps brachii muscle of mice.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25307981

Research Containing: Mice
SPACEFLIGHT AND HINDLIMB SUSPENSION DISUSE MODELS IN MICE
Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to bone fragility and increased susceptibility to fractures. The microgravity of space creates an extreme environment that provides a model for osteoporosis in humans. This greatly accelerated form of osteopenia results in a 0.5-2% loss of bone mass per month. Rat models for this osteoporosis have been examined on many occasions, but STS-108 was the first Space Shuttle flight to use mice. Data reported to date indicate that spaceflight experiments with mice hold promise in predicting some spaceflight effects on humans. Due to the cost and infrequency of flights, ground-based models have been developed to mimic the deleterious effects of the microgravity environment. Hindlimb suspension is one such localized model. This model removes gravitational loading from the hindlimbs by suspending the animal by its tail to a guy wire that runs lengthwise across the cage. Because mice had not flown before STS-108, a direct comparison of this model’s ability to predict spaceflight results has not been examined. The objective of this research is to closely repeat the STS- 108 profile, with hindlimb suspension replacing spaceflight. This includes examining the ability of the protein osteoprotegerin, an osteoclast-inhibiting therapeutic, to mitigate the deleterious effects of skeletal unloading. It is expected that the results will lead to better understanding of the mechanisms of mineralization and bone remodeling to aid in development of countermeasures to prevent spaceflight induced osteoporosis and aid the treatment of osteoporosis here on earth.
Related URLs:
https://www.researchgate.net/publication/8571784_Spaceflight_and_hindlimb_suspension_disuse_models_in_mice
Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies
The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26822934
SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis
Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26487680
The Effects of the Spaceflight Environment on the Vaginal Mucin Layer of the Mouse
It has been well documented that spaceflight has adverse effects on many tissues and systems throughout the body. Although this phenomenon is well documented, relatively little research has been done in the area of the female reproductive system. If spaceflight has harmful effects on the female reproductive system, the migration of the human species into space would be greatly compromised. The purpose of this study was to determine the effects of spaceflight on the thickness of the apical mucin layer in the vaginae of mice, as changes in this layer could have detrimental effects on sperm survival and, therefore, a profound impact on the animal’s ability to reproduce. This study examined the thickness of the vaginal mucin lining from female mice that were exposed to 13 days of spaceflight and their concomitant controls. The tissues were stained using a technique commonly used to localize and analyze mucin varieties. The tissue was qualitatively analyzed for the type of mucin produced (i.e., acidic, neutral, acidic/neutral mixture). Further, the tissue was quantitatively analyzed for the amount of mucins produced by measuring the thickness of the mucin layer. The results of this study indicate that spaceflight causes a thickening of the mucin lining of the vaginal canal. The results further indicate being housed in an Animal Enclosure Module also caused a thickening of the vaginal mucin layer — presumably due to internal cage environmental factors — but this effect was not as pronounced as that seen in the spaceflight mice.
Related URLs:
http://gravitationalandspacebiology.org/index.php/journal/article/view/667
Effects of spaceflight on the murine mandible: Possible factors mediating skeletal changes in non-weight bearing bones of the head
Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC). Upon landing, mandibles were collected and analyzed via micro-computed tomography for tissue mineralization, bone volume (BV/TV), and distance from the cemento-enamel junction to the alveolar crest (CEJ-AC). Mandibular mineralization was not different between spaceflight (SF) and GC mice for either the STS-131 or STS-135 missions. Mandibular BV/TV (combined cortical and trabecular bone) was lower in mandibles from SF mice on the STS-131 mission (80.7+/-0.8%) relative to that of GC (n=8) animals (84.2+/-1.2%), whereas BV/TV from STS-135 mice was not different from GC animals (n=7). The CEJ-AC distance was shorter in mandibles from STS-131 mice (0.217+/-0.004mm) compared to GC animals (0.283+/-0.009mm), indicating an anabolic (or anti-catabolic) effect of spaceflight, while CEJ-AC distance was similar between STS-135 and GC mice. These findings demonstrate that mandibular bones undergo skeletal changes during spaceflight and are susceptible to the effects of weightlessness. However, adaptation of the mandible to spaceflight is dissimilar to that of the cranium, at least in terms of changes in BV/TV.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26545335
Genetic and Apoptotic Changes in Lungs of Mice Flown on the STS-135 Mission in Space.
AIM: The goal of the study was to evaluate changes in lung status due to spaceflight stressors that include radiation above levels found on Earth.;MATERIALS AND METHODS: Within hours after return from a 13-day mission in space onboard the Space Shuttle Atlantis, C57BL/6 mice (FLT group) were euthanized; mice housed on the ground in similar animal enclosure modules served as controls (AEM group). Lung tissue was collected to evaluate the expression of genes related to extracellular matrix (ECM)/adhesion and stem cell signaling. Pathway analysis was also performed. In addition, immunohistochemistry for stem cell antigen-1 (SCA-1), the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay for apoptosis, and staining for histological characteristics were performed.;RESULTS: There were 18/168 genes significantly modulated in lungs from the FLT group (p<0.05 vs. AEM); 17 of these were up-regulated and one was down-regulated. The greatest effect, namely a 5.14-fold increase, was observed on Spock1 (also known as Spark/osteonectin), encoding a multi-functional protein that has anti-adhesive effects, inhibits cell proliferation and regulates activity of certain growth factors. Additional genes with increased expression were cadherin 3 (Cdh3), collagen, type V, alpha 1 (Col5a1), integrin alpha 5 (Itga5), laminin, gamma 1 (Lamc1), matrix metallopeptidase 14 (Mmp14), neural cell adhesion molecule 1 (Ncam1), transforming growth factor, beta induced (Tgfbi), thrombospondin 1 (Thbs1), Thbs2, versican (Vcan), fibroblast growth factor receptor 1 (Fgfr1), frizzled homolog 6 (Fzd6), nicastrin (Ncstn), nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4 (Nfatc4), notch gene homolog 4 (Notch4) and vang-like 2 (Vangl2). The down-regulated gene was Mmp13. Staining for SCA-1 protein showed strong signal intensity in bronchiolar epithelial cells of FLT mice (p<0.05 vs. AEM). TUNEL positivity was also significantly higher in the FLT mice (p<0.05 vs. AEM), but no consistent histological differences were noted. CONCLUSION: The results demonstrate that spaceflight-related stress had a significant impact on lung integrity, indicative of tissue injury and remodeling.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26130787
Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines
The health risks of a dysregulated immune response during spaceflight are important to understand as plans emerge for humans to embark on long-term space travel to Mars. In this first-of-its-kind study, we used adoptive transfer of T-cell receptor transgenic OT-II CD4 T cells to track an in vivo antigen-specific immune response that was induced during the course of spaceflight. Experimental mice destined for spaceflight and mice that remained on the ground received transferred OT-II cells and cognate peptide stimulation with ovalbumin (OVA) 323-339 plus the inflammatory adjuvant, monophosphoryl lipid A. Control mice in both flight and ground cohorts received monophosphoryl lipid A alone without additional OVA stimulation. Numbers of OT-II cells in flight mice treated with OVA were significantly increased by 2-fold compared with ground mice treated with OVA, suggesting that tolerance induction was impaired by spaceflight. Production of proinflammatory cytokines were significantly increased in flight compared with ground mice, including a 5-fold increase in IFN-gamma and a 10-fold increase in IL-17. This study is the first to show that immune tolerance may be impaired in spaceflight, leading to excessive inflammatory responses.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26085131
Effects of spaceflight and ground recovery on mesenteric artery and vein constrictor properties in mice
Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23099650
Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration
Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(-6.72), CSF2(-3.30), CD90(-3.33), PTPRC(-2.79), and GDF15(-2.45), but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow-blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor’s potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.
Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25011075