Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Mice

Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236+/-9 mum and GC: 215+/-5 mum) with no difference in medial wall thickness (SF: 12.4+/-1.6 mum; GC: 12.2+/-1.2 mum). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4+/-0.3 N/m; GC: 5.4+/-0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23457215
http://www.fasebj.org/content/27/6/2282.full.pdf

Molecular Effects of Spaceflight in the Mouse Eye after Space Shuttle MissionSTS-135

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Exposure to long-duration microgravity leads to ocular changes in astronauts, manifested by a variety of signs and symptoms during spaceflight that in some cases persist after return to Earth. These morphological and functional changes are only partly understood and are of occupational health relevance. To investigate further into the molecular basis of the changes occurring in ocular tissue upon exposure to spaceflight, eyes were collected from female C57BL/6 mice flown on STS-135 (FLT) on landing day or from their ground control counterparts maintained at similar conditions within the Animal Enclosure Module (AEM). One eye was fixed for histological sectioning while the contralateral eye was dissected to isolate the retina for gene expression profiling. 8-hydroxy-deoxyguanosine (8OHdG) staining showed a statistically significant increase in the inner nuclear layer of FLT samples compared to AEM. Gene expression analysis in isolated retina identified 139 differentially expressed genes in FLT compared to AEM control samples. The genes affected were mainly involved in pathways and processes of endoplasmic reticulum (ER) stress, inflammation, neuronal and glial cell loss, axonal degeneration, and herpes virus activation. These results suggest a concerted change in gene expression in the retina of mice flown in space, possibly leading to retinal damage, degeneration, and remodeling.

Related URLs:

Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung

by cfynanon 9 June 2015in Biology & Biotechnology No comment

NASA has reported pulmonary abnormalities in astronauts on space missions, but the molecular changes in lung tissue remain unknown. The goal of the present study was to explore the effects of spaceflight on expression of extracellular matrix (ECM), cell adhesion, and pro-fibrotic molecules in lungs of mice flown on Space Shuttle Endeavour (STS-118). C57BL/6Ntac mice housed in animal enclosure modules during a 13-day mission in space (FLT) were killed within hours after return; ground controls were treated similarly for comparison (GRD). Analysis of genes associated with ECM and adhesion molecules was performed according to quantitative RT-PCR. The data revealed that FLT lung samples had statistically significant transcriptional changes, i.e., at least 1.5-fold, in 25 out of 84 examined genes (P < 0.05); 15 genes were upregulated and 10 were downregulated. The genes that were upregulated by more than twofold were Ctgf, Mmp2, Ncam1, Sparc, Spock1, and Timp3, whereas the most downregulated genes were Lama1, Mmp3, Mmp7, vcam-1, and Sele. Histology showed profibrosis-like changes occurred in FLT mice, more abundant collagen accumulation around blood vessels, and thicker walls compared with lung samples from GRD mice. Immunohistochemistry was used to compare expression of six selected proteins associated with fibrosis. Immunoreactivity of four proteins (MMP-2, CTGF, TGF-β1, and NCAM) was enhanced by spaceflight, whereas, no difference was detected in expression of MMP-7 and MMP-9 proteins between the FLT and GRD groups. Taken together, the data demonstrate that significant changes can be readily detected shortly after return from spaceflight in the expression of factors that can adversely influence lung function.

Related URLs:
http://jap.physiology.org/jap/108/1/162.full.pdf

Spaceflight reduces vasoconstrictor responsiveness of skeletal muscle resistance arteries in mice

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Cardiovascular adaptations to microgravity undermine the physiological capacity to respond to orthostatic challenges upon return to terrestrial gravity. The purpose of the present study was to investigate the influence of spaceflight on vasoconstrictor and myogenic contractile properties of mouse gastrocnemius muscle resistance arteries. We hypothesized that vasoconstrictor responses acting through adrenergic receptors [norepinephrine (NE)], voltage-gated Ca2+ channels (KCl), and stretch-activated (myogenic) mechanisms would be diminished following spaceflight. Feed arteries were isolated from gastrocnemius muscles, cannulated on glass micropipettes, and physiologically pressurized for in vitro experimentation. Vasoconstrictor responses to intraluminal pressure changes (0–140 cmH2O), KCl (10–100 mM), and NE (10−9-10−4 M) were measured in spaceflown (SF; n = 11) and ground control (GC; n = 11) female C57BL/6 mice. Spaceflight reduced vasoconstrictor responses to KCl and NE; myogenic vasoconstriction was unaffected. The diminished vasoconstrictor responses were associated with lower ryanodine receptor-2 (RyR-2) and ryanodine receptor-3 (RyR-3) mRNA expression, with no difference in sarcoplasmic/endoplasmic Ca2+ ATPase 2 mRNA expression. Vessel wall thickness and maximal intraluminal diameter were unaffected by spaceflight. The data indicate a deficit in intracellular calcium release via RyR-2 and RyR-3 in smooth muscle cells as the mechanism of reduced contractile activity in skeletal muscle after spaceflight. Furthermore, the results suggest that impaired end-organ vasoconstrictor responsiveness of skeletal muscle resistance arteries contributes to lower peripheral vascular resistance and less tolerance of orthostatic stress in humans after spaceflight.

Related URLs:
http://jap.physiology.org/jap/113/9/1439.full.pdf
http://jap.physiology.org/content/jap/113/9/1439.full.pdf

Spaceflight and hind limb unloading induce similar changes in electrical impedance characteristics of mouse gastrocnemius muscle

by cfynanon 9 June 2015in Biology & Biotechnology No comment

OBJECTIVE: To assess the potential of electrical impedance myography (EIM) to serve as a marker of muscle fiber atrophy and secondarily as an indicator of bone deterioration by assessing the effects of spaceflight or hind limb unloading. METHODS: In the first experiment, 6 mice were flown aboard the space shuttle (STS-135) for 13 days and 8 earthbound mice served as controls. In the second experiment, 14 mice underwent hind limb unloading (HLU) for 13 days; 13 additional mice served as controls. EIM measurements were made on ex vivo gastrocnemius muscle. Quantitative microscopy and areal bone mineral density (aBMD) measurements of the hindlimb were also performed. RESULTS: Reductions in the multifrequency phase-slope parameter were observed for both the space flight and HLU cohorts compared to their respective controls. For ground control and spaceflight groups, the values were 24.7+/-1.3 degrees /MHz and 14.1+/-1.6 degrees /MHz, respectively (p=0.0013); for control and HLU groups, the values were 23.9+/-1.6 degrees /MHz and 19.0+/-1.0 degrees /MHz, respectively (p=0.014). This parameter also correlated with muscle fiber size (rho=0.65, p=0.011) for spaceflight and hind limb aBMD (rho=0.65, p=0.0063) for both groups. CONCLUSIONS: These data support the concept that EIM may serve as a useful tool for assessment of muscle disuse secondary to immobilization or microgravity.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/24292610

Ovarian Follicular and Luteal Development in the Spaceflight Mouse

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The effects of space travel are relatively unexplored in regard to the female reproductive system. An important step in determining possible adverse effects on the human female reproductive system is the analysis of test animal data. This study analyzed the ovarian tissue of mice flown aboard space shuttle Endeavour on NASA mission STS-118. The experiment consisted of three groups of animals: two sets of control animals and a single set of flight animals. Each set consisted of twelve individual mice. The flight animals were housed in the Animal Enclosure Module (AEM) of the Commercial Biomedical Testing Module-2 (CBTM-2) over the 13 day flight. One set of control animals (baseline) were housed in standard cages at room temperature. The other set of control animals (ground control) were housed in ground based AEMs which were environmentally controlled to match the conditions aboard the shuttle Endeavour with a delay of 48 hours and subject to normal gravity. The ovarian tissue samples were fixed in 4% paraformaldehyde, paraffin embedded, sectioned, mounted, and stained using standard Hematoxylin and Eosin staining procedures, and cover-slipped. The gross morphology of the tissue was then qualitatively analyzed. The flight animals were compared to the baseline and ground control sets. The presence of developing follicles of all stages as well as the presence of corpora lutea in all three treatment groups indicates no significant gross morphological changes occur within ovarian tissue when exposed to spaceflight for 13 days or less.

Related URLs:
http://gravitationalandspacebiology.org/index.php/journal/article/view/590/609

[Hemopoietic status of rats exposed to weightlessness]

by cfynanon 9 June 2015in Biology & Biotechnology No comment

This paper summarizes experimental data on the erythropoiesis of rats flown on Cosmos biosatellites for 18-22 days. The histogenesis of the hemopoietic tissue is investigated at the level of stem cells, dividing-maturing pool and mature blood cells (erythrocytes). In weightlessness inhibition of the erythropoiesis in various skeletal sites occurs. Flight data are compared with hemopoietic findings in hypokinetic rats. Possible mechanisms underlying red blood disorders in humans during space flight are discussed. [References: 17]

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med2&AN=6384656
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:6384656&id=doi:&issn=0321-5040&isbn=&volume=18&issue=4&spage=12&pages=12-6&date=1984&title=Kosmicheskaia+Biologiia+i+Aviakosmicheskaia+Meditsina&atitle=Sostoianie+gemopoeza+u+krys%2C+nakhodivshikhsia+v+nevesomosti.&aulast=Shvets&pid=%3Cauthor%3EShvets+VN%3C%2Fauthor%3E&%3CAN%3E6384656%3C%2FAN%3E

Development of a Novel Three-Dimensional, Automatable and Integrated Bioprocess for the Differentiation of Embryonic Stem Cells into Pulmonary Alveolar Cells in a Rotating Vessel Bioreactor System

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Application of stem cells for cell therapy of respiratory diseases is a developing field. We have previously established several protocols for the differentiation of embryonic stem cells (ESC) into alveolar epithelial cells, which require a high degree of operator interference and result in a low yield of target cells. Herein, we have shown that, by provision of a medium conditioned using A549 cells and by integration of classic steps of ESC differentiation into a single step through encapsulation in hydrogels (three-dimensional) and culture in a rotary bioreactor, murine ESC (mESC) could be directed to differentiate into distal respiratory epithelial cells. Type I and II pneumocytes (with a yield of 50% for type II) and Clara cells were demonstrated by the expression of aquaporin 5, surfactant protein C, and Clara cell secretory protein, respectively. We identified target cells as early as day 5 of culture and stably maintained our differentiated cells in vitro for 100 days. Electron microscopy demonstrated microvilli and intracellular lamellar bodies (LB), and fluorescent staining confirmed the active process of exocytosis of these LB in differentiated type II cells. When these cells were decapsulated and cultured in static conditions in flask cultures (two-dimensional), they retained their characteristic type II phenotype and morphology. In conclusion, our protocol offers integrated bioprocessing, shorter time of differentiation, lower cost, no use of growth factors, high reproducibility, and high phenotypic and functional stability, as well as being amenable to automation and being scalable, which would move this field closer to future clinical applications.

Related URLs:
<Go to ISI>://WOS:000302136300003

Modeled Microgravity Sensitizes Osteoclast Precursors to RANKL Mediated Osteoclastogenesis by Increasing DAP12

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain to be fully elucidated. Because of the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own, was unable to induce osteoclastogenesis of osteoclast precursors; however, 24 h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCgamma2, and NFATc1. Receptor activator of NFkB ligand (RANKL) (with or without M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24 h enhanced the formation of very large tartrate-resistant acid phosphatase (TRAP)-positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of the osteoclast marker genes TRAP and cathepsin K. To validate the in vitro system, we studied the hindlimb unloading (HLU) system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by micro-CT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP-positive multinucleated osteoclasts formed and also an increase in RANKL-stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of HLU. In contrast to earlier reported findings, we did not observe any histomorphometric changes in the bone formation parameters. Thus, the foregoing observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing microgravity-induced bone loss by targeting the molecular events occurring in microgravity-induced enhanced osteoclastogenesis.

Related URLs:
<Go to ISI>://WOS:000259411002251

Expansion of mammalian neural stem cells in bioreactors: effect of power input and medium viscosity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Multipotent neural precursors can be cultured in suspension bioreactors as aggregates of stem cells and progenitor cells. However, it is important to limit the size of the aggregates, as necrotic centers may develop at very large diameters. Previously, we have shown that the hydrodynamics within a suspension bioreactor can be used to control the diameter of NSC aggregates (D-MAVO < 150 μm) below sizes where necrosis would be expected to occur. In the present study, power law correlations were developed for our bioreactors showing the dependence of the maximum mean aggregate diameter on both the kinematic viscosity of the medium and the power input per unit mass of medium, The power input was manipulated by changing the agitation rate (60-100 rpm), and the viscosity was manipulated through the addition of non-toxic levels of carboxymethylcellulose. The study also confirmed that the maximum liquid shear generated at the surface of the aggregates was sufficient to dislodge single cells, thus limiting the maximum diameter of the aggregates, without causing cell damage (τ(max) = 9.76 dyn/cm(2)). This is a first step in the development of a reproducible, scaled-up process for the production of neural stem cells for therapeutic applications including the treatment of neurodegenerative disorders and acute central nervous system injuries. (C) 2002 Elsevier Science B.V. All rights reserved.

Related URLs:
<Go to ISI>://WOS:000175354200011

  • «
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • »

Researcher Interviews

No items found

Projects in Flight

  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS