Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Muscle

Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut – Initial Verification on the International Space Station

by cfynanon 22 August 2016in Biology & Biotechnology No comment

BACKGROUND: Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut’s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system’s orbital operation capability and utility, as well as its preventative effect on an astronaut’s musculoskeletal atrophy. METHODS: HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). RESULTS: The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. CONCLUSIONS: These results showed the orbital operation capability and utility, and the preventive effect of HTS for an astronaut’s musculoskeletal atrophy. The initial flight data together with the ground data obtained so far will be utilized in the future planning of human space exploration.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26296204

Isokinetic Strength Changes Following Long-Duration Space ight on the ISS

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Long-duration spaceflight results in a loss of muscle strength that poses both operational and medical risks, particularly during emergency egress, upon return to Earth, and during future extraterrestrial exploration. Isokinetic testing of the knee, ankle, and trunk quantifies movement-specific strength changes following spaceflight and offers insight into the effectiveness of in-flight exercise countermeasures. We retrospectively evaluated changes in isokinetic strength for 37 ISS crewmembers (Expeditions 1–25) following 163 +/- 38 d (mean +/- SD) of spaceflight. Gender, in-flight resistance exercise hardware, and preflight strength were examined as potential modifiers of spaceflight-induced strength changes. Mean isokinetic strength declined 8–17% following space ight. One month after return to Earth, strength had improved, but small defcits of 1–9% persisted. Space flight-induced strength losses were not different between men and women. Mean strength losses were as much as 7% less in crewmembers who flew after the Advanced Resistive Exercise Device (ARED) replaced the interim Resistive Exercise Device (iRED) as the primary in-flight resistance exercise hardware, although these differences were not statistically significant. Absolute and relative preflight strength were moderately correlated (r= -0.47 and -0.54, respectively) with post flight strength changes. In-flight resistance exercise did not prevent decreased isokinetic strength after long-duration spaceflight. However, continued utilization of ARED, a more robust resistance exercise device providing higher loads than iRED, may result in greater benefits as exercise prescriptions are optimized. With reconditioning upon return to Earth, strength is largely recovered within 30 d.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26630197

V ̇O2 and HR kinetics before and after International Space Station missions

by cfynanon 22 August 2016in Biology & Biotechnology No comment

PURPOSE: Heart rate (HR), pulmonary and muscle oxygen uptake ([Formula: see text]O2pulm, [Formula: see text]O2musc) kinetics after changes of work rate (WR) indicate regulatory characteristics related to aerobic metabolism. We analysed whether the kinetics of HR, [Formula: see text]O2pulm and [Formula: see text]O2musc are slowed after missions to the International Space Station (ISS). The changes of the kinetics were correlated with [Formula: see text]O2peak data. METHODS: 10 astronauts [4 females, 6 males, age: 48.0 +/- 3.8 years, height: 176 +/- 7 cm, mass: 74.5 +/- 15.9 kg (mean +/- SD)] performed an incremental test to determine [Formula: see text]O2peak (before missions on L-110 days, after return on R+1/+10/+36 days), and a cardio-respiratory kinetics test (CRKT) with randomized 30-80 W WR changes to determine HR, [Formula: see text]O2pulm and [Formula: see text]O2musc kinetics by time-series analysis (L-236/-73, R+6/+21). Kinetics were summarized by maximum and related lag of cross-correlation function (CCFmax, CCFlag) of WR with the analysed parameter. RESULTS: Statistically, significant changes were also found for CCFmax([Formula: see text]O2musc) between L-236 and R+6 (P = 0.010), L-236 and R+21 (P = 0.030), L-72 and R+6 (P = 0.043). Between pre-to-post mission change in [Formula: see text]O2peak and CCFmax(HR), a correlation was shown (r SP = 0.67, P = 0.017). CONCLUSION: The [Formula: see text]O2musc kinetics changes indicate aerobic detraining effects which are present up to 21 days following space flight. The correlations between changes in [Formula: see text]O2peak and HR kinetics illustrate the key role of cardiovascular regulation in [Formula: see text]O2peak. The addition of CRKT to ISS flight is recommended to obtain information regarding the potential muscular and cardiovascular deconditioning. This allows a reduction in the frequency of higher intensity testing during flight.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26662601

Effects of microgravity on the mouse triceps brachii muscle

by cfynanon 22 August 2016in Biology & Biotechnology No comment

INTRODUCTION: In this study we investigated the effects of microgravity on the fiber properties of the mouse triceps brachii, a forelimb muscle that has no antigravity function. METHODS: Mice (n = 7) were exposed to microgravity for 13 days on the space shuttle Atlantis (Space Transportation System-135). The fiber cross-sectional area (CSA) and succinate dehydrogenase (SDH) staining intensity of the triceps brachii muscle were compared with those of controls (n = 7). SDH activity in this muscle was also estimated. RESULTS: Microgravity did not affect the body weight, muscle weight, or fiber CSA, but there was reduced SDH staining intensity of all types of fibers, irrespective of the muscle region (P < 0.05). Microgravity also reduced muscle SDH activity (P < 0.05). CONCLUSIONS: Short-term exposure to microgravity induced a decrease in oxidative capacity, but not atrophy, in the triceps brachii muscle of mice. Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25307981

Biomedical analysis of rat body hair after hindlimb suspension for 14 days

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The levels of 26 minerals in rat body hair were analyzed in control and hindlimb-suspended Wistar Hannover rats (n=5 each). We quantified the levels of 22 minerals in this experiment. However, we were unable to measure the levels of 4 minerals (Be, V, Cd, and Hg) quantitatively because they were below the limit of detection. Of the 22 quantified, the levels of 19 minerals were not significantly different between control and hindlimb-suspended groups. The levels of 3 minerals (Pb, Cr, and Al) tended to be higher in the hindlimb-suspended group than in the control group; however, this difference was not significant. The concentrations of 3 other minerals (I, K, and Mg) were significantly different between the 2 groups. The iodine (I) level was 58.2% higher in the hindlimb-suspended group than in the control group (P<0.05). Potassium (K) and magnesium (Mg) levels were 55.2% and 20.4% lower, respectively, in the experimental group (0.05 in both cases). These results indicate that a physiological change in mineral metabolism resulting from physical or mental stress, such as hindlimb suspension, is reflected in body hair. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. We believe that hindlimb suspension for 14 days can simulate the effects of an extremely severe environment, such as space flight, because the hindlimb suspension model elicits a rapid physiological change in skeletal muscle, bone, and fluid shift even in the short term. These results also suggest that we can detect various effects on the body by analyzing the human scalp hair shaft.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0094576511003766

Exercise in space: human skeletal muscle after 6 months aboard the International Space Station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The aim of this investigation was to document the exercise program used by crewmembers (n = 9; 45 ± 2 yr) while aboard the International Space Station (ISS) for 6 mo and examine its effectiveness for preserving calf muscle characteristics. Before and after spaceflight, we assessed calf muscle volume (MRI), static and dynamic calf muscle performance, and muscle fiber types (gastrocnemius and soleus). While on the ISS, crewmembers had access to a running treadmill, cycle ergometer, and resistance exercise device. The exercise regimen varied among the crewmembers with aerobic exercise performed ∼5 h/wk at a moderate intensity and resistance exercise performed 3–6 days/wk incorporating multiple lower leg exercises. Calf muscle volume decreased (P < 0.05) 13 ± 2% with greater (P < 0.05) atrophy of the soleus (−15 ± 2%) compared with the gastrocnemius (−10 ± 2%). Peak power was 32% lower (P < 0.05) after spaceflight. Force-velocity characteristics were reduced (P < 0.05) −20 to −29% across the velocity spectrum. There was a 12–17% shift in myosin heavy chain (MHC) phenotype of the gastrocnemius and soleus with a decrease (P < 0.05) in MHC I fibers and a redistribution among the faster phenotypes. These data show a reduction in calf muscle mass and performance along with a slow-to-fast fiber type transition in the gastrocnemius and soleus muscles, which are all qualities associated with unloading in humans. Future long-duration space missions should modify the current ISS exercise prescription and/or hardware to better preserve human skeletal muscle mass and function, thereby reducing the risk imposed to crewmembers.

Related URLs:
http://jap.physiology.org/jap/106/4/1159.full.pdf

Spaceflight and hind limb unloading induce similar changes in electrical impedance characteristics of mouse gastrocnemius muscle

by cfynanon 9 June 2015in Biology & Biotechnology No comment

OBJECTIVE: To assess the potential of electrical impedance myography (EIM) to serve as a marker of muscle fiber atrophy and secondarily as an indicator of bone deterioration by assessing the effects of spaceflight or hind limb unloading. METHODS: In the first experiment, 6 mice were flown aboard the space shuttle (STS-135) for 13 days and 8 earthbound mice served as controls. In the second experiment, 14 mice underwent hind limb unloading (HLU) for 13 days; 13 additional mice served as controls. EIM measurements were made on ex vivo gastrocnemius muscle. Quantitative microscopy and areal bone mineral density (aBMD) measurements of the hindlimb were also performed. RESULTS: Reductions in the multifrequency phase-slope parameter were observed for both the space flight and HLU cohorts compared to their respective controls. For ground control and spaceflight groups, the values were 24.7+/-1.3 degrees /MHz and 14.1+/-1.6 degrees /MHz, respectively (p=0.0013); for control and HLU groups, the values were 23.9+/-1.6 degrees /MHz and 19.0+/-1.0 degrees /MHz, respectively (p=0.014). This parameter also correlated with muscle fiber size (rho=0.65, p=0.011) for spaceflight and hind limb aBMD (rho=0.65, p=0.0063) for both groups. CONCLUSIONS: These data support the concept that EIM may serve as a useful tool for assessment of muscle disuse secondary to immobilization or microgravity.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/24292610

Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/22470446

Comparison of knee motion on Earth and in space: an observational study

by cfynanon 9 June 2015in Biology & Biotechnology No comment

BACKGROUND: Spaceflight has been shown to cause atrophy, reduced functional capacity, and increased fatigue in lower-limb skeletal muscles. The mechanisms of these losses are not fully understood but are thought to result, in part, from alteration in muscle usage. METHODS: Knee-joint angles and lower-extremity muscle activity were measured continually, via elecrogoniometry and surface electromyography respectively, from two subjects during entire working days of activity on Earth and onboard the International Space Station (ISS). RESULTS: On Earth the distribution of angular positions of the knee was typically bimodal, with peaks of >75 degrees of flexion and in almost full extension (<15 degrees of flexion). However, on the ISS, a single peak in the mid-range of the available range of motion was seen. The knee joint was also moved through fewer excursions and the excursions were smaller in amplitude, resulting in a reduced span of angles traversed. The velocities of the excursions in space were lower than those used on Earth. CONCLUSION: These results demonstrate that, in space, overall knee-joint motion is reduced, and there is a transformation in the type of muscle action compared to that seen on Earth, with more isometric action at the expense of concentric and particularly eccentric action.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/16613607

[Dynamics of the body liquids and composition in long-duration space flight (bio-impedance analysis)]

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bio-impedancemetiy was used to study dynamics of the human hydration status and body composition aboard the International space station (ISS). Body liquids in 12 Russian crewmembers were found reduced in different periods of space flight: the total, intra- and extracellular liquid volumes became less by 5.2 to 10.4% on the group average as compared with baseline values. In-flight changes in body composition also displayed a consistent pattern. While the lean mass loss was insignificant averaging 1.9-4.0%, the fatty mass gain averaged 4.6 to 8.2% in the initial three months on flight. We conclude that the human body hydration status falls along with the muscular mass reduction and fatty mass gain during long-duration space flight.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17902350

  • 1
  • 2
  • 3
  • »

Researcher Interviews

No items found

Projects in Flight

  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS