Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Osteogenesis

Microgravity: the immune response and bone

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Exposure to microgravity during space flight affects almost all human physiological systems. The affected systems that are of key importance to human space exploration are the musculoskeletal, neurovestibular, and cardiovascular systems. However, alterations in the immune and endocrine functions have also been described. Bone loss has been shown to be site specific, predominantly in the weight-bearing regions of the legs and lumbar spine. This phenomenon has been attributed to a reduction in bone formation resulting from a decrease in osteoblastic function and an increase in osteoclastic resorption. In order to examine the effects of microgravity on cellular function here on earth, several ground-based studies have been performed using different systems to model microgravity. Our studies have shown that modeled microgravity (MMG) inhibits the osteoblastic differentiation of human mesenchymal stem cells (hMSCs) while increasing their adipogenic differentiation. Here, we discuss the potential molecular mechanisms that could be altered in microgravity. In particular, we examine the role of RhoA kinase in maintaining the formation of actin stress fibers and the expression of nitric oxide synthase under MMG conditions. These proposed mechanisms, although only examined in hMSCs, could be part of a global response to microgravity that ultimately alters human physiology. [References: 160]

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=16313354
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:16313354&id=doi:&issn=0105-2896&isbn=&volume=208&issue=1&spage=267&pages=267-80&date=2005&title=Immunological+Reviews&atitle=Microgravity%3A+the+immune+response+and+bone.&aulast=Zayzafoon&pid=%3Cauthor%3EZayzafoon+M%3C%2Fauthor%3E&%3CAN%3E16313354%3C%2FAN%3E

Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways?

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed8&AN=2007294544
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1515%2FBC.2007.082&issn=1431-6730&isbn=&volume=388&issue=7&spage=755&pages=755-763&date=2007&title=Biological+Chemistry&atitle=Could+the+effect+of+modeled+microgravity+on+osteogenic+differentiation+of+human+mesenchymal+stem+cells+be+reversed+by+regulation+of+signaling+pathways%3F&aulast=Zheng&pid=%3Cauthor%3EZheng+Q.%3C%2Fauthor%3E&%3CAN%3E2007294544%3C%2FAN%3E

Regulation of osteogenetic differentiation of mesenchymal stem cells by two axial rotational culture

by cfynanon 9 June 2015in Biology & Biotechnology No comment

It is crucial to understand how gravitational force affects the osteogenic differentiation of mesenchymal stem cells (MSCs), and these fundamental aspects hold promise for the development of a novel model of MSC regulation for cell proliferation and differentiation. The objective of this study was to investigate how significantly gravitational dispersion affects the spontaneously induced osteogenic differentiation of MSCs. Expression of surface antigen was measured by flow cytometry prior to two axial rotational cultures. About 12,500 hMSC cells were spread on culture wells of 1.8 cm(2) surface area and incubated for 7 days at 5% CO(2). The culture medium, 10% FCS/DMEM containing 3 ng/ml bFGF, was replaced every 3 days. Four wells then were placed in a 50-ml centrifugal tube filled with 10% FCS/DMEM without bFGF. The centrifugal tube was attached to the center of the rotor, and two axial rotational cultures were started at 10 rpm each of both rotational speeds. It was confirmed that the hMSCs used in this study expressed typical surface antigens as well as a multipotent differentiation ability for either osteogenic or adipogenic differentiation. Spontaneous expression of alkaline phosphatase (Alp) mRNA following the conventional static culture (1G condition) was suppressed by two axial rotational cultures for 7 days (p < 0.05). A separate study indicated that the cell count number eventually increased from 24,700 +/- A 6,400 to 78,400 +/- A 18,700 (p < 0.05). In addition, suppressed Alp mRNA was recovered after an additional 7-day culture under static conditions. This result indicated that dispersion of gravity is a promising modality to regulate osteogenic differentiation of hMSCs.

Related URLs:
<Go to ISI>://WOS:000297787000007

Impaired osteoblastogenesis potential of progenitor cells in skeletal unloading is associated with alterations in angiogenic and energy metabolism profile

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Skeletal unloading provokes bone loss. These bone alterations have been shown to be associated with impairment of osteoblastic activity. In the present study, we evaluated the effect of skeletal unloading on bone marrow progenitor cells, for exploration of the underlying mechanism. Wistar rats were randomized to be either hindlimb unloaded for 9 days or to act as controls. Micro-CT was used to detect tibial trabecular architecture changes in response to skeletal unloading. Microgravity conditions for 9 days resulted in a decreased number and an increased spacing of the bone trabeculae in the proximal tibia. The proliferative capacity of the femoral bone marrow samples was assessed (fibroblast-colony-forming assay). By using qPCR, the expression of selected markers of vascularization (Vegfa; Hif1a; Angpt1), energy metabolism (Prkaa2; Mtor), bone formation (Runx2; Alp; Bglap; Bmp2; Bmp4; Bmp7) and bone resorption (Acp5; Tnfsf11; Tnfrsf11b) in these bone marrow suspensions was measured. We demonstrated a striking decrease in the number of fibroblastic progenitors in response to hindlimb unloading. This deficit in proliferation was shown to be accompanied by altered hindlimb perfusion and cellular energy homeostasis. Ex vivo culture assays of the bone marrow-derived progenitor cells screened for osteogenic (Runx2; Alp; Bglap) and adipogenic (Pparg; Fabp4) differentiation alterations in response to microgravity. Induced progenitor cells from unloaded rats showed a delay in osteogenic differentiation and impaired adipogenic differentiation compared to control. The data of this multi-level approach demonstrate that skeletal unloading significantly affects the bone tissue and its metabolism at the progenitor stage. The molecular expressions of the bone marrow population support a role of cellular metabolic stresses in skeletal alterations induced by inactivity.

Related URLs:
<Go to ISI>://WOS:000306372100004

Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The goal of this study was to determine the effects of hindlimb unloading (HU) on the ex vivo growth and the osteogenic potential of mesenchymal stem cells (MSCs) from the femurs of rats. Microgravity was simulated by 28-day HU in male Sprague-Dawley (SD) rats, and the bone marrow (BM) was collected from hindlimb femurs of HU or control (CTL) rats. MSCs were isolated from BM and cultured for eight passages. Then MSCs at passages 2, 4, and 8 were induced for osteogenesis or adipogenesis. The results revealed that HU decreased the osteogenic potential of MSCs and also decreased the expression of osteoblast gene marker mRNAs in cells induced by osteogenic conditions. Meanwhile, the expression of Runx2 mRNA and the phosphorylation of ERK were also decreased. There were no significant differences of osteoblast gene marker and Runx2 mRNA expression between cells induced from different passages of MSCs in UH rats. Under adipogenic conditions, HU increased both the adipogenic potential of MSCs and the expression of adipocytic gene marker mRNAs in induced cells. HU also increased the expression of PPAR gamma 2 mRNA, but with no effect on the phosphorylation of p38MAPK. The adipogenic potential of MSCs and the expression of adipocytic gene marker mRNAs in induced cells decreased along with cell cultures under normal gravity. This suggests that the normal gravity during in vitro MSC culture and the centrifugal force produced during cell harvest after each passage could decrease the adipogenic potential of MSCs, but could not reverse the effect of HU on the osteogenic potential of MSCs.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed8&AN=2008439245
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1089%2Fscd.2008.0254&issn=1547-3287&isbn=&volume=17&issue=4&spage=795&pages=795-804&date=2008&title=Stem+Cells+and+Development&atitle=Effects+of+hindlimb+unloading+on+ex+vivo+growth+and+osteogenic%2Fadipogenic+potentials+of+bone+marrow-derived+mesenchymal+stem+cells+in+rats&aulast=Pan&pid=%3Cauthor%3EPan+Z.%3C%2Fauthor%3E&%3CAN%3E2008439245%3C%2FAN%3E

RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Spaceflight, aging, and disuse lead to reduced BMD. This study shows that overexpression of constitutively active RhoA restores actin cytoskeletal arrangement, enhances the osteoblastic phenotype, and suppresses the adipocytic phenotype of human mesenchymal stem cells cultured in modeled microgravity. INTRODUCTION: Reduced BMD during spaceflight is partly caused by reduced bone formation. However, mechanisms responsible for this bone loss remain unclear. We have previously shown reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells (hMSCs) cultured in modeled microgravity (MMG). The small GTPase, RhoA, regulates actin stress fiber formation and has been implicated in the lineage commitment of hMSCs. We examined the effects of MMG on actin cytoskeletal organization and RhoA activity and the ability of constitutively active RhoA to reverse these effects. MATERIALS AND METHODS: hMSCs were seeded onto plastic microcarrier beads at a density of 10(6) and allowed to form aggregates in DMEM containing 10% FBS for 7 days. Aggregates were incubated in DMEM containing 2% FBS for 6 h with or without an adenoviral vector containing constitutively active RhoA at a multiplicity of infection (moi) of 500 and allowed to recover in 10% FBS for 24 h. Cells were transferred to the rotary cell culture system to model microgravity or to be maintained at normal gravity for 7 days in DMEM, 10% FBS, 10 nM dexamethasone, 10 mM beta-glycerol phosphate, and 50 muM ascorbic acid 2-phosphate. RESULTS: F-actin stress fibers are disrupted in hMSCs within 3 h of initiation of MMG and are completely absent by 7 days, whereas monomeric G-actin is increased. Because of the association of G-actin with lipid droplets in fat cells, the observed 310% increase in intracellular lipid accumulation in hMSCs cultured in MMG was not unexpected. Consistent with these changes in cellular morphology, 7 days of MMG significantly reduces RhoA activity and subsequent phosphorylation of cofilin by 88+/-2% and 77+/-9%, respectively. Importantly, introduction of an adenoviral construct expressing constitutively active RhoA reverses the elimination of stress fibers, significantly increases osteoblastic gene expression of type I collagen, alkaline phosphatase, and runt-related transcription factor 2, and suppresses adipocytic gene expression of leptin and glucose transporter 4 in hMSCs cultured in MMG. CONCLUSION: Suppression of RhoA activity during MMG represents a novel mechanism for reduced osteoblastogenesis and enhanced adipogenesis of hMSCs.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed7&AN=2005432701
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1359%2FJBMR.050611&issn=0884-0431&isbn=&volume=20&issue=10&spage=1858&pages=1858-1866&date=2005&title=Journal+of+Bone+and+Mineral+Research&atitle=RhoA+and+cytoskeletal+disruption+mediate+reduced+osteoblastogenesis+and+enhanced+adipogenesis+of+human+mesenchymal+stem+cells+in+modeled+microgravity&aulast=Meyers&pid=%3Cauthor%3EMeyers+V.E.%3C%2Fauthor%3E&%3CAN%3E2005432701%3C%2FAN%3E

RhoA and cytoskeletal disruption contribute to altered differentiation of human mesenchymal stem cells in modeled microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Spaceflight, aging, and disuse lead to reduced BMD. This study shows that overexpression of constitutively active RhoA restores actin cytoskeletal arrangement, enhances the osteoblastic phenotype, and suppresses the adipocytic phenotype of human mesenchymal stem cells cultured in modeled microgravity. INTRODUCTION: Reduced BMD during spaceflight is partly caused by reduced bone formation. However, mechanisms responsible for this bone loss remain unclear. We have previously shown reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells (hMSCs) cultured in modeled microgravity (MMG). The small GTPase, RhoA, regulates actin stress fiber formation and has been implicated in the lineage commitment of hMSCs. We examined the effects of MMG on actin cytoskeletal organization and RhoA activity and the ability of constitutively active RhoA to reverse these effects. MATERIALS AND METHODS: hMSCs were seeded onto plastic microcarrier beads at a density of 10(6) and allowed to form aggregates in DMEM containing 10% FBS for 7 days. Aggregates were incubated in DMEM containing 2% FBS for 6 h with or without an adenoviral vector containing constitutively active RhoA at a multiplicity of infection (moi) of 500 and allowed to recover in 10% FBS for 24 h. Cells were transferred to the rotary cell culture system to model microgravity or to be maintained at normal gravity for 7 days in DMEM, 10% FBS, 10 nM dexamethasone, 10 mM beta-glycerol phosphate, and 50 muM ascorbic acid 2-phosphate. RESULTS: F-actin stress fibers are disrupted in hMSCs within 3 h of initiation of MMG and are completely absent by 7 days, whereas monomeric G-actin is increased. Because of the association of G-actin with lipid droplets in fat cells, the observed 310% increase in intracellular lipid accumulation in hMSCs cultured in MMG was not unexpected. Consistent with these changes in cellular morphology, 7 days of MMG significantly reduces RhoA activity and subsequent phosphorylation of cofilin by 88+/-2% and 77+/-9%, respectively. Importantly, introduction of an adenoviral construct expressing constitutively active RhoA reverses the elimination of stress fibers, significantly increases osteoblastic gene expression of type I collagen, alkaline phosphatase, and runt-related transcription factor 2, and suppresses adipocytic gene expression of leptin and glucose transporter 4 in hMSCs cultured in MMG. CONCLUSION: Suppression of RhoA activity during MMG represents a novel mechanism for reduced osteoblastogenesis and enhanced adipogenesis of hMSCs.

Related URLs:
<Go to ISI>://WOS:000224326801239

NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Previous studies have suggested that periodontal ligament stem cells (PDLSCs) play crucial role in regeneration of periodontal defects, and recently tissue engineering based on PDLSCs to enhance periodontal regeneration has been the focus of periodontal research. A theoretical way to achieve this goal would be to provide a "stimulatory'' environment to rapidly expand PDLSCs in vitro to expedite tissue engineering of periodontium. We hypothesize that three-dimensional (3D) dynamic simulated microgravity (SMG) culture system have effect on periodontal stem cells, and would benefit periodontal stem cells proliferation and differentiation, but up to now, there are no related reports on this aspect. In this study, we investigated the biological effect of three-dimensional dynamic SMG induced by rotary cell culture system (RCCS) on human periodontal ligament stem cells (hPDLSCs) in vitro. hPDLSCs were isolated from surgically extracted human teeth and enriched by collecting multiple colonies. hPDLSCs were inoculated on Cytodex 3 microcarriers and cultured in RCCS. The results showed that SMG affected the biology of hPDLSCs as indicated by promotion of proliferation and viability, alterations of morphology, and disorganization of microfilament system. Besides, SMG-treated hPDLSCs presented increased matrix mineralization and up-regulated expression of mineralization associated genes after incubation in osteogenic medium. For it is the first time to investigate effects of SMG on PDLSCs, the research may lend insight into variations of cell response in 3D environment, and contribute to achievement of desirable periodontal regeneration utilizing PDLSCs-based tissue engineering approaches.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed9&AN=2009606938
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1089%2Fscd.2008.0371&issn=1547-3287&isbn=&volume=18&issue=9&spage=1273&pages=1273-1282&date=2009&title=Stem+Cells+and+Development&atitle=NASA-approved+rotary+bioreactor+enhances+proliferation+and+osteogenesis+of+human+periodontal+ligament+stem+cells&aulast=Li&pid=%3Cauthor%3ELi+S.%3C%2Fauthor%3E&%3CAN%3E2009606938%3C%2FAN%3E

Erk 1/2 activation in enhanced osteogenesis of human mesenchymal stem cells in poly(lactic-glycolic acid) by cyclic hydrostatic pressure

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The aim of this study was to identify the signal transduction pathways and mechano-transducers that play critical roles in the processes induced by changes in cyclic hydrostatic pressure and fluid shear in 3-dimensional (3D) culture systems. Mesenchymal stem cells were loaded into a polymeric scaffold and divided into three groups according to the stress treatment: static, fluid shear, and hydrostatic pressure with fluid shear. Cells were exposed daily to a hydrostatic pressure of 0.2 MPa for 1 min followed by 14 min rest with fluid flow at 30 rpm. Protein extracts were analyzed by Western blot for extracellular signal-regulated kinase 1/2 (ERK1/2). The complexes were cultured under the mechanical stimuli for 21 days with or without phospho-ERK1/2 inhibitor (U0126) and evaluated by RT-PCR, calcium contents, and immunohistochemistry. Under conditions of mechanical stimulation, the activation of ERK1/2 was sustained or increased with time. U0126 suppressed mechanical stimuli-induced expression of osteocalcin. In addition, calcium contents and the degrees of osteocalcin and osteopontin staining were decreased by this inhibitor. These results demonstrate that mechanical stimuli, particularly hydrostatic pressure with fluid shear, enhance osteogenesis in 3D culture systems via ERK1/2 activation. (c) 2006 Wiley Periodicals, Inc.

Related URLs:
<Go to ISI>://WOS:000244429600007

Proliferation, osteogenic differentiation, and distribution of rat bone marrow stromal cells in nonwoven fabrics by different culture methods

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The proliferation, osteogenic differentiation, and distribution patterns of stromal cells from rat bone marrow were investigated in a three-dimensional nonwoven fabric of polyethylene terephthalate fiber by the static, agitated, and stirred culture methods; stirring speeds were 10, 50, and 100 rpm in the stirred culture method. The culture method affected the time profile of proliferation and osteogenic differentiation of cells or their distribution in the fabric. The extent of cell proliferation and osteogenic differentiation became higher in order of the stirred at 100 rpm = the stirred at 50 rpm > the stirred at 10 rpm > the agitated > the static methods. In addition, the cells were more uniformly proliferated in the fabric by the stirred culture method with time than they were proliferated in the fabric by other methods. The alkaline phosphatase (ALP) activity and calcium content were higher for cells cultured by the stirred culture method than those cultured by other methods. The total ALP activity, calcium content, and bone mineral density were higher for every stirred method than those for other methods. However, the distribution uniformity of cells differentiated was low irrespective of the culture method. It is concluded that the extent of proliferation and differentiation of cells or their distribution uniformity in the nonwoven fabrics was influenced by the culture method.

Related URLs:
<Go to ISI>://WOS:000253960900011

  • 1
  • 2
  • »

Researcher Interviews

No items found

Projects in Flight

  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS