Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        • ARISS (Amateur Radio from ISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Phenotype

Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(-6.72), CSF2(-3.30), CD90(-3.33), PTPRC(-2.79), and GDF15(-2.45), but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow-blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor’s potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25011075

Media ion composition controls regulatory and virulence response of Salmonella in spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19079590

Viability of barley seeds after long-term exposure to outer side of international space station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117711003541

Shifts in bone marrow cell phenotypes caused by spaceflight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bone marrow cells were isolated from the humeri of C57BL/6 mice after a 13-day flight on the space shuttle Space Transportation System (STS)-118 to determine how spaceflight affects differentiation of cells in the granulocytic lineage. We used flow cytometry to assess the expression of molecules that define the maturation/activation state of cells in the granulocytic lineage on three bone marrow cell subpopulations. These molecules included Ly6C, CD11b, CD31 (platelet endothelial cell adhesion molecule-1), Ly6G (Gr-1), F4/80, CD44, and c-Fos. The three subpopulations were small agranular cells [region (R)1], larger granular cells (R2), which were mostly neutrophils, and very large, very granular cells (R3), which had properties of macrophages. Although there were no composite phenotypic differences between total bone marrow cells isolated from spaceflight and ground-control mice, there were subpopulation differences in Ly6C (R1 and R3), CD11b (R2), CD31 (R1, R2, and R3), Ly6G (R3), F4/80 (R3), CD44(high) (R3), and c-Fos (R1, R2, and R3). In particular, the elevation of CD11b in the R2 subpopulation suggests neutrophil activation in response to landing. In addition, decreases in Ly6C, c-Fos, CD44(high), and Ly6G and an increase in F4/80 suggest that the cells in the bone marrow R3 subpopulation of spaceflight mice were more differentiated compared with ground-control mice. The presence of more differentiated cells may not pose an immediate risk to immune resistance. However, the reduction in less differentiated cells may forebode future consequences for macrophage production and host defenses. This is of particular importance to considerations of future long-term spaceflights.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19056998
http://jap.physiology.org/content/jap/106/2/548.full.pdf

Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Cardiomyocytes derived from human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, disease modeling, and drug discovery, all of which require enriched cardiomyocytes, ideally ones with mature phenotypes. However, current methods are typically performed in 2D environments that produce immature cardiomyocytes within heterogeneous populations. Here, we generated 3D aggregates of cardiomyocytes (cardiospheres) from 2D differentiation cultures of hPSCs using microscale technology and rotary orbital suspension culture. Nearly 100% of the cardiospheres showed spontaneous contractility and synchronous intracellular calcium transients. Strikingly, from starting heterogeneous populations containing approximately 10%-40% cardiomyocytes, the cell population within the generated cardiospheres featured approximately 80%-100% cardiomyocytes, corresponding to an enrichment factor of up to 7-fold. Furthermore, cardiomyocytes from cardiospheres exhibited enhanced structural maturation in comparison with those from a parallel 2D culture. Thus, generation of cardiospheres represents a simple and robust method for enrichment of cardiomyocytes in microtissues that have the potential use in regenerative medicine as well as other applications.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25254340
http://www.cell.com/stem-cell-reports/pdf/S2213-6711(14)00188-X.pdf

Novel quantitative biosystem for modeling physiological fluid shear stress on cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The response of microbes to changes in the mechanical force of fluid shear has important implications for pathogens, which experience wide fluctuations in fluid shear in vivo during infection. However, the majority of studies have not cultured microbes under physiological fluid shear conditions within a range commonly encountered by microbes during host-pathogen interactions. Here we describe a convenient batch culture biosystem in which (i) the levels of fluid shear force can be varied within physiologically relevant ranges and quantified via mathematical models and (ii) large numbers of cells can be planktonically grown and harvested to examine the effect of fluid shear levels on microbial genomic and phenotypic responses. A quantitative model based on numerical simulations and in situ imaging analysis was developed to calculate the fluid shear imparted by spherical beads of different sizes on bacterial cell cultures grown in a rotating wall vessel (RWV) bioreactor. To demonstrate the application of this model, we subjected cultures of the bacterial pathogen Salmonella enterica serovar Typhimurium to three physiologically-relevant fluid shear ranges during growth in the RVW and demonstrated a progressive relationship between the applied fluid shear and the bacterial genetic and phenotypic responses. By applying this model to different cell types, including other bacterial pathogens, entire classes of genes and proteins involved in cellular interactions may be discovered that have not previously been identified during growth under conventional culture conditions, leading to new targets for vaccine and therapeutic development.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17142365

Drosophila melanogaster and the future of 'evo-devo' biology in space. Challenges and problems in the path of an eventual colonization project outside the earth

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Space exploration, especially its future phase involving the International Space Station (ISS) makes possible the study of the effects on living systems of long-term expositions to such a strange environment. This phase is being initiated when Biological Sciences are crossing a no-return line into a new territory where the connection between phenotype and genotype may be finally made. We briefly review the paradoxical results obtained in Space experiments performed during the last third of the XX Century. They reveal that simple unicellular systems sense the absence of gravity changing their cytoskeletal organization and the signal transduction pathways, while animal development proceeds unaltered in these conditions, in spite of the fact that these processes are heavily involved in embryogenesis. Longer-term experiments possible in the ISS may solve this apparent contradiction. On the other hand, the current constraints on the scientific use of the ISS makes necessary the development of new hardware and the modification of current techniques to start taking advantage of this extraordinary technological facility. We discuss our advances in this direction using one of the current key biological model systems, Drosophila melanogaster. In addition, the future phase of Space exploration, possibly leading to the exploration and, may be, the colonization of another planet, will provide the means of performing interesting evolutionary experiments, studying how the terrestrial biological systems will change in their long-term adaptation to new, very different environments. In this way, Biological Research in Space may contribute to the advancement of the new Biology, in particular to the branch known as "Evo-Devo". On the other hand, as much as the Space Adventure will continue involving human beings as the main actors in the play, long-term multi-generation experiments using a fast reproducing species, such as Drosophila melanogaster, capable of producing more than 300 generations in 15 years, the useful life foreseen for ISS, will be important. Among other useful information, they will help in detecting the possible changes that a biological species may undergo in such an environment, preventing the uncontrolled occurrence of irreversible deleterious effects with catastrophic consequences on the living beings participating in this endeavour.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/14631629

Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Human periodontal ligament fibroblasts (hPDLF) play a key role in the regeneration of periodontal compartment during guided tissue regeneration procedures. This property is attributed to the progenitor cell subsets residing in the area. The aim of this study was to investigate whether hPDLFs could undergo an osteogenic differentiation under two- and three-dimensional (2D and 3D) culture conditions upon osteogenic induction. hPDLFs were isolated from six healthy donors, cultured, and expanded according to standard protocols. Then, three osteogenic culture conditions (dexamethasone, ascorbic acid, and beta-glycerophosphate) were established: 1) 2D culture as single-cell monolayer, 2) 3D-static culture on mineralized poly(DL-lactic-co-glycolic acid) (PLGA) scaffold, and 3) 3D culture on mineralized PLGA scaffold inside the NASA-approved bioreactor stimulating microgravity conditions. After 21 days of osteogenic induction, the majority of monolayer cultures had undergone differentiation toward osteogenic lineage, as indicated by morphological changes, mineralization assay, and some phenotypical properties. However, immunohistochemistry revealed that the scaffold cultures expressed higher levels of osteogenic marker proteins compared with that of the monolayers. Secondly, hPDLF-PLGA constructs in bioreactor showed an increased expression of osteopontin and osteocalcin compared with that of static 3D culture after 21 days. Results indicate that human periodontal ligament contains a subpopulation of cells capable of undergoing osteogenic differentiation and presumably contributing to regeneration of bone defects in the adjacent area. Human PDLF-seeded mineralized PLGA scaffold in microgravity bioreactor may be used to support osteogenic differentiation in vitro. Thus, this system may offer new potential benefits as a tool for periodontal tissue engineering.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed7&AN=2006163387
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1089%2Ften.2006.12.257&issn=1076-3279&isbn=&volume=12&issue=2&spage=257&pages=257-266&date=2006&title=Tissue+Engineering&atitle=Osteogenic+induction+of+human+periodontal+ligament+fibroblasts+under+two-+and+three-dimensional+culture+conditions&aulast=Inan&pid=%3Cauthor%3EInan+B.%3C%2Fauthor%3E&%3CAN%3E2006163387%3C%2FAN%3E

Physiological effects of microgravity on osteoblast morphology and cell biology

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=12951695
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:12951695&id=doi:&issn=1569-2574&isbn=&volume=8&issue=&spage=129&pages=129-57&date=2002&title=Advances+in+Space+Biology+%26+Medicine&atitle=Physiological+effects+of+microgravity+on+osteoblast+morphology+and+cell+biology.&aulast=Hughes-Fulford&pid=%3Cauthor%3EHughes-Fulford+M%3C%2Fauthor%3E&%3CAN%3E12951695%3C%2FAN%3E

Attachment to Cytodex Beads Enhances Differentiation of Human Retinal Progenitors in 3-D Bioreactor Culture

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Retinal degenerations are the leading cause of genetically inherited blindness. One of the strategies currently being tested for the treatment is cell/tissue transplantation. As such stem cells and tissue engineered constructs are of great importance. This report describes the growth of multipotential human retinal progenitors (cell line) in a 3-D bioreactor culture vessel with (adhesive substrate) laminin coated collagen 1/cytodex beads and without adhesive substrate (beadless culture). The study demonstrates that progenitors are capable of growth and differentiation in the bioreactor with or without beads. The presence of adhesive substrate accelerates and enhances photoreceptor differentiation in the bioreactor, reflected by significantly higher level expressions of several photoreceptor specific proteins; N acetyl transferase (AaNat), rhodopsin and cone transducin GNB3. Both monomeric and dimeric forms of rhodopsin are expressed in cells attached to beads, whereas, only the monomeric form is expressed in beadless culture. Similarly, a different isomeric form of tyrosine hydroxylase (a doublet) is expressed in cell bead attached cultures. Co-culturing retinal progenitors with retinal pigment epithelium (RPE) in cell bead cultures further stabilizes the photoreceptor phenotype and rhodopsin expression. Most of the retinal neuronal phenotypes are confirmed by an expression of specific proteins. The adhesive substrate in the form of collagen 1, laminin coated cytodex beads, could be just an effector for stabilization or a positive signal, modulating extracellular matrix (ECM) molecules and/or neurotrophins. In the future, the bioreactor culture system could be utilized to grow retina-like structures from ciliary epithelium by incorporating biodegradable substrates.

Related URLs:
<Go to ISI>://WOS:000301640300005

  • 1
  • 2
  • »

Researcher Interviews

No items found

Projects in Flight

  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
  • ARISS (Amateur Radio from ISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS