Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Polyimides

An Investigation of Stress Dependent Atomic Oxygen Erosion of Black Kapton Observed on MISSE 6

by cfynanon 9 June 2015in Physical Sciences No comment

Black Kapton XC polyimide was flown as part of the Polymer Film Tensile Experiment (PFTE) on Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films, typical of those used for thermal control blankets or supporting membranes on Earth orbiting spacecraft, to the low Earth orbital (LEO) environment under both relaxed and tension conditions. Black Kapton XC under tensile stress experienced a higher erosion rate during exposure in LEO than the same material that was flown in a relaxed condition. Testing conducted to determine the magnitude of the stress and erosion dependence using a ground-based thermal energy atomic oxygen plasma showed a slight dependence of erosion yield on stress for Kapton HN and Black Kapton XC, but not to the extent observed on MISSE 6. More testing is needed to isolate the factors present in LEO that cause stress dependent erosion.

Related URLs:

Space Environment Exposure of Polymer Films on the Materials International Space Station Experiment: Results from MISSE 1 and MISSE 2

by cfynanon 9 June 2015in Physical Sciences No comment

A total of thirty-one samples were included in the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Polymer Film Thermal Control (PFTC) and Gossamer Materials experiments, which were exposed to the low Earth orbit environment for nearly 4 years on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment (MISSE 1 and MISSE 2). This paper describes objectives, materials, and characterizations for the MISSE 1 and MISSE 2 GRC PFTC and Gossamer Materials samples. Samples included films of polyimides, fluorinated polyimides, and Teflon® fluorinated ethylene propylene (FEP) with and without second-surface metalized layers and/or surface coatings. Films of polyphenylene benzobisoxazole (PBO) and a polyarylene ether benzimidazole (TOR-LM TM) were also included. Polymer film samples were examined post-flight for changes in mechanical and optical properties. The environment in which the samples were located was characterized through analysis of sapphire contamination witness samples and samples dedicated to atomic oxygen (AO) erosion measurements. Results of the analyses of the PFTC and Gossamer Materials experiments are discussed.

Related URLs:
http://hip.sagepub.com/content/20/4-5/371.abstract

 Undercutting Studies of Protected Kapton H Exposed to In-Space and Ground-Based Atomic Oxygen

by cfynanon 9 June 2015in Physical Sciences No comment

This study is part of a Materials International Space Station Experiment (MISSE) sequence to characterize the performance of prospective spacecraft materials when subjected to the synergistic effects of the space environment. Atomic oxygen (AO) is the most prevalent species in low earth orbit (LEO). In this environment AO is mainly responsible for the erosion of hydrocarbons and halocarbon polymers. The AO erosion rates of Kapton (DuPont) H are known and well documented. Hence, it is customary to compare the AO erosion yields of candidate materials to the commonly accepted standard of this polyimide. The purpose of this study was to provide characterization of AO degradation of SiO(x) protected Kapton H film, which was subject during MISSE 2 to undercutting erosion beneath microscopic defects in the protective film, and compare the degradation resulting from hyperthermal ram (approx.4.5 eV) LEO AO to the degradation resulting from exposure to thermal ground-based (approx.0.04 eV) AO.

Related URLs:

MISSE Scattered Atomic Oxygen Characterization Experiment.

by cfynanon 9 June 2015in Physical Sciences No comment

An experiment designed to measure the atomic oxygen (AO) erosion profile of scattered AO was exposed to Low Earth Orbital (LEO) AO for almost four years as part of the Materials International Space Station Experiment 1 and 2 (MISSE 1 and 2). The experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), Tray 1, attached to the exterior of the International Space Station (ISS) Quest Airlock. The experiment consisted of an aperture disk lid of Kapton H (DuPont) polyimide coated on the space exposed surface with a thin AO durable silicon dioxide film. The aperture lid had a small hole in its center to allow AO to enter into a chamber and impact a base disk of aluminum. The AO that scattered from the aluminum base could react with the under side of the aperture lid which was coated sporadically with microscopic sodium chloride particles. Scattered AO erosion can occur to materials within a spacecraft that are protected from direct AO attack but because of apertures in the spacecraft the AO can attack the interior materials after scattering. The erosion of the underside of the Kapton lid was sufficient to be able to use profilometry to measure the height of the buttes that remained after washing off the salt particles. The erosion pattern indicated that peak flux of scattered AO occurred at and angle of approximately 45 from the incoming normal incidence on the aluminum base unlike the erosion pattern predicted for scattering based on Monte Carlo computational predictions for AO scattering from Kapton H polyimide. The effective erosion yield for the scattered AO was found to be a factor of 0.214 of that for direct impingement on Kapton H polyimide.

Related URLs:

Researcher Interviews

No items found

Projects in Flight

  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS