Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        • Controlled Dynamics Locker for Microgravity Experiments on ISS
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Random positioning machine

The SCD – Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mes- enchymal stem cells (BMSCs), as well as osteoblasts, osteo- cytes, and osteoclasts. The effects of microgravity on osteo- cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Pre- vious researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of opera- tive constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only par- tially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD – STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies per- formed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and stor- age of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable sam- ples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.

Related URLs:
http://link.springer.com/article/10.1007/s12217-015-9466-5

The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions

by cfynanon 22 August 2016in Biology & Biotechnology No comment

We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: "NanoRacks-CellBox-Thyroid Cancer". The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell-cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26633361

Microgravity Reduces the Differentiation and Regenerative Potential of Embryonic Stem Cells

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microgravity for 15 days inhibits mESC differentiation and expression of terminal germ layer lineage markers in EBs. Additionally, microgravity-unloaded EBs retained stem cell self-renewal markers, suggesting that mechanical loading at Earth’s gravity is required for normal differentiation of mESCs. Finally, cells recovered from microgravity-unloaded EBs and then cultured at Earth’s gravity showed greater stemness, differentiating more readily into contractile cardiomyocyte colonies. These results indicate that mechanical unloading of stem cells in microgravity inhibits their differentiation and preserves stemness, possibly providing a cellular mechanistic basis for the inhibition of tissue regeneration in space and in disuse conditions on earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26414276

Bdelloid rotifers as model system to study developmental biology in space

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Bdelloid rotifers are suitable model systems for space experiments. Due to their developmental pattern they appear adequate to investigate the role of the cytoskeleton during oogenesis and during early developmental stages, and to reflect the effects of disturbances in the spatial arrangement of cytoskeletal components. The effect of weightlessness on the developmental pattern of a bdelloid rotifer will be studied in the International Space Station: in preparation for it we are performing ground-based experiments on the development of rotifer embryos under either increased or decreased gravity. The model studied is Macrotrachela quadricornifera, a species of rotifers belonging to the Bdelloidea class. Samples exposed to gravity disturbance were analyzed for morphology and fitness-related parameters. Rotifers were exposed over several days to altered gravity conditions and the morphology of eggs laid during this period were investigated using a confocal laser microscope. A subset of eggs was allowed to hatch to determine newborn developmental time and age at maturity. High (up to 20g) gravity was obtained in a slow centrifuge suitable for animal cultivation over several days. To produce low (simulated 0.0001g) gravity a Random Positioning Machine equipped with a ‘rotifer bioreactor’ was used. Under all conditions the rotifer retained normal life-history traits, and did not show permanent changes in embryo morphology, regardless to the stresses to which it was exposed. Only some modification of the shape of early embryos, experiencing 20g, has been noted, but later developmental stages appeared unaffected, and normal juveniles hatched. Whether this result indicates any capacity to repair damage during embryogenesis of these Spiralia experiencing 20g is an open question. The significance of the result as well as the use of instruments to simulate gravity perturbations are discussed.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed6&AN=14631628
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:14631628&id=doi:&issn=1569-2574&isbn=&volume=9&issue=&spage=25&pages=25-39&date=2003&title=Advances+in+space+biology+and+medicine&atitle=Bdelloid+rotifers+as+model+system+to+study+developmental+biology+in+space&aulast=Ricci&pid=%3Cauthor%3ERicci+C.%3C%2Fauthor%3E&%3CAN%3E14631628%3C%2FAN%3E

Identification of proteins involved in inhibition of spheroid formation under microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Many types of cells transit in vitro from a two- to a three-dimensional growth, when they are exposed to microgravity. The underlying mechanisms are not yet understood. Hence, we investigated the impact of microgravity on protein content and growth behavior. For this purpose the human thyroid cancer cells FTC-133 were seeded either in recently developed cell containers that can endure enhanced physical forces and perform media changes and cell harvesting automatically or in T-25 culture flasks. All cells were cultured for 5 days at 1g. Afterwards, a part of the cell containers were flown to the International Space Station, while another part was kept on the ground. T-25 flasks were mounted on and next to a Random Positioning Machine. The cells were cultured for 12 days under the various conditions, before they were fixed with RNAlater. All fixed cultures showed monolayers, but three-dimensional aggregates were not detected. In a subsequent protein analysis, 180 proteins were identified by mass spectrometry. These proteins did not indicate significant differences between cells exposed to microgravity and their 1g controls. However, they suggest that an enhanced production of proteins related to the extracellular matrix could detain the cells from spheroid formation, while profilin-1 is phosphorylated This article is protected by copyright. All rights reserved

Related URLs:
http://dx.doi.org/10.1002/pmic.201500067
http://onlinelibrary.wiley.com/doi/10.1002/pmic.201500067/abstract

Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (mug) conditions. Scientists on the ground use two models of simulated mug (smug): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true mug when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true mug and smug on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2ralpha, Ifngamma, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that smug models provide an excellent test bed for scientists to develop baseline studies and augment true mug in spaceflight experiments. Ultimately, smug and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/25568077
http://ajpregu.physiology.org/content/308/6/R480

Researcher Interviews

No items found

Projects in Flight

  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
  • Controlled Dynamics Locker for Microgravity Experiments on ISS
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS