Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        • NIH-Osteo
        • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Space Flight

RISK OF INTERVERTEBRAL DISC DAMAGE AFTER PROLONGED SPACE FLIGHT

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Background Back pain and intervertbral disc (IVD) damage are common problems experienced by astronauts. We hypothesize this is from paraspinal muscle deconditioning, ∼5 cm body lengthening from spinal swelling and straightening, and biochemical tissue changes.Objective Examine morphological changes in the lumbar spine induced by spaceflight.Design Prospective, case series clinical study.Setting We studied crewmembers from the National Aeronautics and Space Administration (NASA).Participants Recruitment from International Space Station NASA/European Space Agency/Canadian Space Agency crewmembers, starting 2011. We enrolled 8 NASA crewmembers. One crewmember completed the study. The others are in various stages of testing.Risk factors Assessment Crew members were studied before and after a ∼180 day mission in the International Space Station.Main outcome measurements In pre-flight and post-flight studies of the lumbar spine, evaluate: 1) degenerative changes using MRI, 2) compressibility using an upright MRI backpack loading protocol, 3) spinal kinematics with X-ray videography, 4) visual analog scale pain.Results Comparing pre-flight and post- flight data, there were 1) increased lumbar IVD heights in the supine position, 2) increased lumbar IVD compressibility in the upright position, 3) decreased flexibility, and 4) increased low back pain post-flight.⇓Spinal kinematics (angles in degrees) during flexion/extension. Pre-flight degenerate disks had less motion. Post-flight, all disks had less motion.Conclusions The data support the idea that decreased gravitational forces on the IVDs, during prolonged microgravity, increases their water content but decreases proteoglycan. This increases disk degeneration risk on Earth. We have a sample size of one for complete Pre- and Post-Flight testing. It's difficult to make conclusions with this preliminary data. However, the acquired images are very high quality and provide confidence for future tests. The next crewmember returns to Earth for final testing November, 2013. Testing of 4 crewmembers and ongoing recruitment are underway.

Related URLs:
http://bjsm.bmj.com/content/48/7/578.3.abstract

Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e., in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17034767

Medical care for Russian cosmonauts' health on the ISS

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Established with the personal participation of O.G. Gazenko, the Russian system of medical care for cosmonauts' health has been largely preserved till this day. The system was fully functional on board the orbital complex MIR and, with appropriate modifications, has been adopted as a core of the medical care for Russian members of the ISS crews. In the period of 2000-2008, 22 cosmonauts were members of 17 ISS increments from 140 to 216 days in duration. The main functions of the medical care system were to control health, physical and mental performance, and to support implementation of space researches. The flow of readaptation to the normal gravity was, in most cases similar to what has been typical on return from the Russian orbital stations; some deviations are accounted for by application of the in-flight countermeasures. The paper familiarizes reader with some aspects of the theoretical work of academician O.G. Gazenko in the field of medical care in space flight. It outlines the principles of ISS medical management. The integrated medical support system combines medical equipment and items available on the Russian and US segments; the integrated medical group consists of flight surgeons, medical experts and biomedical engineers of the international partners and coordinates planning and implementation of medical operations. Also, challenges of health care on the phase of ISS utilization are defined.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19238917

Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis)

by cfynanon 9 June 2015in Biology & Biotechnology No comment

During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromede to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development of vestibuloocular and vestibulospinal projections (i) microgravity retards the development of VR activity while hypergravity weakly accelerates it; (ii) that microgravity retards the rVOR development while hypergravity caused a sensitization, and that (iii) AG-induced changes of VR activity during fictive swimming have a vestibular origin.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/18666444

Cultural Differences in Crewmembers and Mission Control Personnel During Two Space Station Programs

by cfynanon 9 June 2015in Biology & Biotechnology No comment

INTRODUCTION: Cultural differences among crewmembers and mission control personnel can affect long-duration space missions. We examine three cultural contrasts: national (American vs. Russian); occupational (crewmembers vs. mission control personnel); and organizational [Mir space station vs. International Space Station (ISS)]. METHODS: The Mir sample included 5 American astronauts, 8 Russian cosmonauts, and 42 American and 16 Russian mission control personnel. The ISS sample included 8 astronauts, 9 cosmonauts, and 108 American and 20 Russian mission control personnel. Subjects responded to mood and group climate questions on a weekly basis. The ISS sample also completed a culture and language questionnaire. RESULTS: Crewmembers had higher scores on cultural sophistication than mission control personnel, especially American mission control. Cultural sophistication was not related to mood or social climate. Russian subjects reported greater language flexibility than Americans. Crewmembers reported better mood states than mission control, but both were in the healthy range. There were several Russian-American differences in social climate, with the most robust being higher work pressure among Americans. Russian-American social climate differences were also found in analyses of crew only. Analyses showed Mir-ISS differences in social climate among crew but not in the full sample. DISCUSSION: We found evidence for national, occupational, and organizational cultural differences. The findings from the Mir space station were essentially replicated on the ISS. Alterations to the ISS to make it a more user-friendly environment have still not resolved the issue of high levels of work pressure among the American crew.

Related URLs:
http://www.ingentaconnect.com/content/asma/asem/2009/00000080/00000006/art00004
http://dx.doi.org/10.3357/ASEM.2430.2009

Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Aquatic animals have almost no body weight related proprioception for spatial orientation. Xenopus larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact (dense) otoliths; Xenopus larvae have less dense otolith (membranes) similar to land vertebrates; but their sacculus-otoliths are vertically positioned, which also may lead to a higher g-sensitivity. For plausibility reasons gravity should influence the embryonic development of gravity receptors. Yet, evaluations of photographs taken from the surface of cut deep-frozen objects by incident light show no aberration of the shape of the whole vestibulum and of the shape, density, size and position of the otolith membrane in larvae developed under near-zero g (NEXPA-BW-STATEX in D-1-Mission). The further evaluation of the "weightless-larvae" revealed a probably not yet described statolith-like formation in the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the l-g controls. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs. The swimming behavior of the larvae which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med2&AN=11537815
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:11537815&id=doi:&issn=0273-1177&isbn=&volume=6&issue=12&spage=151&pages=151-6&date=1986&title=Advances+in+Space+Research&atitle=Survey+of+the+vestibulum%2C+and+behavior+of+Xenopus+laevis+larvae+developed+during+a+7-days+space+flight.&aulast=Briegleb&pid=%3Cauthor%3EBriegleb+W%3C%2Fauthor%3E&%3CAN%3E11537815%3C%2FAN%3E

Fate of the grafted ovaries from female salamander Pleurodeles waltl embarked on the Cosmos 2229 flight

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The flight procedure of "Experience Triton" on Cosmos 2229 made necessary to sacrifice the embarked females just after landing. In order to detect genetic abnormalities in the progency of these adult females, we have performed a surgical procedure based on the transplantation of an ovarian piece on a recipient animal. One year later, as observed after laparotomy, the grafted ovaries exhibit oogonies and some growing oocytes. In present time, out of 10 castrated and grafted adult females only one is still alive bearing a large grafted ovary. Out of 5 castrated and grafted juvenile males, three are still alive, two of them exhibit a developing grafted ovary. The grafted animals will be ready for mating within a few months. Therefore, it will soon be possible to study the progeny of animals that have been submitted to space conditions.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=11538626
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:11538626&id=doi:&issn=0273-1177&isbn=&volume=17&issue=6&spage=269&pages=269-70&date=1996&title=Advances+in+Space+Research&atitle=Fate+of+the+grafted+ovaries+from+female+salamander+Pleurodeles+waltl+embarked+on+the+Cosmos+2229+flight.&aulast=Bautz&pid=%3Cauthor%3EBautz+A%3C%2Fauthor%3E&%3CAN%3E11538626%3C%2FAN%3E

Cardiovascular autonomic control after short-duration spaceflights

by cfynanon 9 June 2015in Biology & Biotechnology No comment

After spaceflight, astronauts sometimes suffer a variable degree of reduced orthostatic tolerance. Although many studies have addressed this problem, many aspects remain unclear. Also, it is unknown how long the cardiovascular system needs to recover from short duration spaceflights. The scope of the present study was to determine a long-term follow-up of cardiovascular control up to 25 days after spaceflight under control conditions in five astronauts using heart rate variability, blood pressure variability and baroreflex sensitivity (BRS) indices. In standing position heart rate after spaceflight was significantly higher compared with pre-flight (R+1: 99 (SD 9) BPM vs L-30: 77 (SD 3) BPM; p<0.001). At the same time high frequency modulation of heart rate was extremely depressed (R+1: 70 (SD 334) ms2 vs L-30: 271 (SD 68) ms2; p<0.01), as was BRS: (R+1: 5 (SD 1) vs L-30: 10 (SD 2) ms/mmHg, p<0.05). These changes had largely recovered after 4 days upon return to Earth. Orthostatic blood pressure control was well maintained from the first day after landing. The decrease in BRS and in vagal heart rate modulation following short-duration spaceflight appear to constitute an adequate autonomic neural response to restored gravity. After 4 days upon return to Earth, vagal heart rate modulation is almost completely recovered to the pre-flight level. The findings of the present study demonstrate that the decrease in vagal heart rate modulation in standing position should not be characterised as some kind of cardiovascular deconditioning, but rather as the normal response to orthostatic stress after spaceflight.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S009457650900143X

Microbial antibiotic production aboard the International Space Station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Previous studies examining metabolic characteristics of bacterial cultures have mostly suggested that reduced gravity is advantageous for microbial growth. As a consequence, the question of whether space flight would similarly enhance secondary metabolite production was raised. Results from three prior space shuttle experiments indicated that antibiotic production was stimulated in space for two different microbial systems, albeit under suboptimal growth conditions. The goal of this latest experiment was to determine whether the enhanced productivity would also occur with better growth conditions and over longer durations of weightlessness. Microbial antibiotic production was examined onboard the International Space Station during the 72-day 8A increment. Findings of increased productivity of actinomycin D by Streptomyces plicatus in space corroborated with previous findings for the early sample points (days 8 and 12); however, the flight production levels were lower than the matched ground control samples for the remainder of the mission. The overall goal of this research program is to elucidate the specific mechanisms responsible for the initial stimulation of productivity in space and translate this knowledge into methods for improving efficiency of commercial production facilities on Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/16091928

Psychological support for U.S. astronauts on the international space station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19070310

  • «
  • 1
  • 2
  • 3
  • …
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • »

Researcher Interviews

No items found

Projects in Flight

  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
  • NIH-Osteo
  • Materials Testing: The Evaluation of Gumstix Modules in Low Earth Orbit
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS