Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Space radiation

Expression of p53-Regulated Proteins in Human Cultured Lymphoblastoid TSCE5 and WTK1 Cell Lines during Spaceflight

by cfynanon 22 August 2016in Biology & Biotechnology No comment

The aim of this study was to determine the biological effects of space radiations, microgravity, and the interaction of them on the expression of p53-regulated proteins. Space experiments were performed with two human cultured lymphoblastoid cell lines: one line (TSCE5) bears a wild-type p53 gene status, and another line (WTK1) bears a mutated p53 gene status. Under 1 gravity or microgravity conditions, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples were simultaneously cultured for 8 days in the CBEF on the ground for 8 days. After spaceflight, protein expression was analyzed using a PanoramaTM Ab MicroArray protein chips. It was found that p53-dependent up-regulated proteins in response to space radiations and space environment were MeCP2 (methyl CpG binding protein 2), and Notch1 (Notch homolog 1), respectively. On the other hand, p53-dependent down-regulated proteins were TGF-β, TWEAKR (tumor necrosis fac- tor-like weak inducer of apoptosis receptor), phosho-Pyk2 (Proline-rich tyrosine kinase 2), and 14-3-3θ/τ which were affected by microgravity, and DR4 (death receptor 4), PRMT1 (protein arginine methyltrans- ferase 1) and ROCK-2 (Rho-associated, coiled-coil containing protein kinase 2) in response to space radi- ations. ROCK-2 was also suppressed in response to the space environment. The data provides the p53- dependent regulated proteins by exposure to space radiations and/or microgravity during spaceflight. Our expression data revealed proteins that might help to advance the basic space radiation biology.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/22374402

Relativistic electrons high doses at International Space Station and Foton M2/M3 satellites

by cfynanon 22 August 2016in Biology & Biotechnology, Earth Science and Remote Sensing, Physical Sciences No comment

The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the per- iod February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 lGy h 1 behind 1.75 g cm 2 shielding at Foton M2, 2314 lGy h 1 behind 0.71 g cm 2 shielding at Foton M3 and 19,195 lGy h 1 (Flux is 8363 cm 2 s 1) behind les than 0.4 g cm 2 shielding at ISS.

Related URLs:
http://adsabs.harvard.edu/abs/2009AdSpR..44.1433D

Time serial analysis of the induced LEO environment within the ISS 6A

by cfynanon 9 June 2015in Technology Development & Demonstration No comment

Anisotropies in the low Earth orbit (LEO) radiation environment were found to influence the thermoluminescence detectors (TLD) dose within the (International Space Station) ISS 7A Service Module. Subsequently, anisotropic environmental models with improved dynamic time extrapolation have been developed including westward and northern drifts using AP8 Min & Max as estimates of the historic spatial distribution of trapped protons in the 1965 and 1970 era, respectively. In addition, a directional dependent geomagnetic cutoff model was derived for geomagnetic field configurations from the 1945 to 2020 time frame. A dynamic neutron albedo model based on our atmospheric radiation studies has likewise been required to explain LEO neutron measurements. The simultaneous measurements of dose and dose rate using four Liulin instruments at various locations in the US LAB and Node 1 has experimentally demonstrated anisotropic effects in ISS 6A and are used herein to evaluate the adequacy of these revised environmental models.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117706007885

Space radiation damage to HDTV camera CCDs onboard the international space station

by cfynanon 9 June 2015in Technology Development & Demonstration No comment

The image quality of high-definition television (HDTV) cameras and camcorders for space activity is degraded by the presence of permanent bright pixels (so-called “white defects”) due to space radiation. We studied the space radiation damage to HDTV charge-coupled devices (CCDs; 2 × 106 pixels per chip) loaded in the Russian service module (SM) of the International Space Station (ISS) for 71 days, 256 days and 446 days. We used the “Passive Dosimeter for Lifescience Experiments in Space” (PADLES), which consists of CR-39 plastic nuclear track detectors (PNTDs) and thermoluminescent dosimeters, to measure space radiation doses received by the HDTV CCDs in the SM during loading periods. The average production rates of white defects for output voltage greater than 0.5 mV were 2.366 ± 0.055 pixels/day in Si and 5.213 ± 0.071 pixels/mGy in Si. We also investigated the correlation between the position of the white defects and tracks of high-energy particles with LET∞,Si of approximately 300 keV/μm or more using stacks of CR-39 PNTDs and the HDTV CCD chips. We found that approximately 30% of these high-energy high-LET particles coincided with the position of white defects on the HDTV CCDs in the SM.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S135044871000380X

BRADOS – Dose determination in the Russian Segment of the International Space Station

by cfynanon 9 June 2015in Technology Development & Demonstration No comment

In the frame of the joint experiment BRADOS-1, absorbed dose and average linear energy transfer were assessed by means of 7LiF:Mg,Ti (TLD-700) thermoluminescence detectors for different panels onboard the Russian Segment of the International Space Station in the timeframe between February and October 2001 (248 days). A technique is presented to correct the measured absorbed dose values for thermoluminescent efficiency in the radiation climate onboard the spacecraft. Average linear energy transfer is determined from the high-temperature thermoluminescence emission in the TLD-700 glowcurve and used as a parameter in the thermoluminescent-efficiency correction. Depending on the shielding distribution, the efficiency–corrected absorbed dose varies between 168(2) μGy/d in panel No. 318 (core block ceiling) and 249(4) μGy/d in panel No. 443 (starboard-side commander cabin). The experimental data are compared with model calculations using detailed shielding distributions and orbit parameters as input.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117706000251

Convolution of TLD and SSNTD measurements during the BRADOS-1 experiment onboard ISS (2001)

by cfynanon 9 June 2015in Technology Development & Demonstration No comment

The Russian BRADOS experiment onboard the International Space Station (ISS) was aimed at developing methods in radiation dosimetry and radiobiology to improve the reliability of risk estimates for the radiation environment in low-Earth orbit. Experimental data from thermoluminescence detectors (TLDs) and solid state nuclear track detectors (SSNTDs) gathered during the BRADOS-1 (24 February–31 October 2001) mission are reviewed and convolved to obtain absorbed dose and dose equivalent from primary and secondary cosmic-ray particles. Absorbed dose rates in the ISS Russian Segment (Zvezda) ranged from 208 ± 14 to 275 ± 14 μ Gy d – 1 . Dose equivalent rates were determined to range from 438 ± 29 to 536 ± 32 μ Sv d – 1 , indicating a quality factor between 1.95 ± 0.15 and 2.11 ± 0.20 . The contribution of densely ionizing particles ( LET ⩾ 10 keV μ m – 1 ) to dose equivalent made up between 54% and 64%.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S1350448708002539

Observations of the SAA radiation distribution by Liulin-E094 instrument on ISS

by cfynanon 9 June 2015in Technology Development & Demonstration No comment

Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Units (MDU), and the NASA ) during the time period May 11–July 26, 2001. In the time span 11–27 May 2001 four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS “Unity” Node-1 and three (MDU #2–#4) units were located in the US Laboratory module. The MDTissue Equivalent Proportional Counter (TEPCU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the shielding differences generated by different geometry between the predominating eastward drifting protons and the orientation and placement of the MDUs within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton incident spectra inside of ISS were calculated using calibration curve of MDU obtained during the tests with protons at the Louvain-la-Neuve cyclotron facility. The energy of incident spectra maximums were analyzed against L value for the individual passes through the South Atlantic Anomaly.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117706000032

Radiation measured for ISS-Expedition 12 with different dosimeters

by cfynanon 9 June 2015in Physical Sciences No comment

Radiation in low Earth orbit (LEO) is mainly from Galactic Cosmic Rays (GCR), solar energetic particles and particles in South Atlantic Anomaly (SAA). These particles’ radiation impact to astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. It is important to investigate the LET spectrum for the radiation field and the influence of radiation on astronauts. At present, the best active dosimeters used for all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors; the best passive dosimeters are thermoluminescence dosimeters (TLDs) or optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation for space mission Expedition 12 (ISS-11S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the mission with these different dosimeters. This paper introduces the operation principles for these dosimeters, describes the method to combine the results measured by CR-39 PNTDs and TLDs/OSLDs, presents the experimental LET spectra and the radiation quantities.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0168900207013782

Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

by cfynanon 9 June 2015in Physical Sciences No comment

Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei (“alpha particles”) and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0094576509004901

Some recent measurements onboard spacecraft with passive detector

by cfynanon 9 June 2015in Physical Sciences No comment

Several passive detectors were used to estimate dosimetry and microdosimetry characteristics of radiation field onboard spacecraft, namely: thermoluminescent detectors (TLDs), mainly to appreciate the contribution of radiation with low-linear energy transfer (LET); Si diode, to try to establish the contribution of fast neutrons; an LET spectrometer based on the chemically etched polyallyldiglycolcarbonate etched track detectors (PADC-TEDs). Detectors have been exposed onboard MIR and International Space Station (ISS) since 1997, they were also used during the MESSAGE 2 biological experiment, October 2003. The results are presented, analysed and discussed. Particular attention is devoted to the possibility of estimating neutron contribution based on data obtained with PADC-TED spectrometer of LET.

Related URLs:
http://rpd.oxfordjournals.org/content/116/1-4/228.abstract

  • 1
  • 2
  • 3
  • »

Researcher Interviews

No items found

Projects in Flight

  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS