Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Spacecraft

[Fungal biota in manned space environment and impact on human health]

by cfynanon 9 June 2015in Biology & Biotechnology No comment

It is important to promote microbiological research essential for long-term manned space activities under microgravity and in a completely closed environment in space craft in relation to long-duration space expeditions on the International Space Station (ISS) or to the moon and Mars in the future. Environmental monitoring data from the space shuttle, the Mir, and the ISS have already shown that microorganisms isolated from air and on inner surfaces of space craft were generally carried by crew members. The Japanese Experiment Module (JEM) "KIBO" was attached to the ISS and started its operation from 2008. It is an invaluable opportunity to begin the survey of the transition of microbiota, particularly fungal biota, in JEM from "brand-new" to "well-used" condition at various periods. Therefore, we are preparing the on-board analyzing systems for microbiota in air and on inner surfaces of ISS/JEM and normal microbiota of the astronauts themselves. In this paper, we introduce the current status and future plans on fungal research on ISS/JEM to protect flight crew members and flight hardware from potentially hazardous microorganisms from the environmental and biomedical aspects of Japan Aerospace Exploration Agency (JAXA).

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/21358138

Developmental biology in outer space: spaceflight provides the opportunity for new studies

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med3&AN=11539116
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:11539116&id=doi:&issn=0006-3568&isbn=&volume=39&issue=5&spage=314&pages=314-20&date=1989&title=Bioscience&atitle=Developmental+biology+in+outer+space%3A+spaceflight+provides+the+opportunity+for+new+studies.&aulast=Malacinski&pid=%3Cauthor%3EMalacinski+GM%3C%2Fauthor%3E&%3CAN%3E11539116%3C%2FAN%3E

Relationship between carbon dioxide levels and reported headaches on the international space station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

OBJECTIVE: Because of anecdotal reports of CO(2)-related symptoms onboard the International Space Station (ISS), the relationship between CO(2) and in-flight headaches was analyzed. METHODS: Headache reports and CO(2) measurements were obtained, and arithmetic means and single-point maxima were determined for 24-hour and 7-day periods. Multiple imputation addressed missing data, and logistic regression modeled the relationship between CO(2), headache probability, and covariates. RESULTS: CO(2) level, age at launch, time in-flight, and data source were significantly associated with headache. For each 1-mm Hg increase in CO(2), the odds of a crew member reporting a headache doubled. To keep the risk of headache below 1%, average 7-day CO(2) would need to be maintained below 2.5 mm Hg (current ISS range: 1 to 9 mm Hg). CONCLUSIONS: Although headache incidence was not high, results suggest an increased susceptibility to physiological effects of CO(2) in-flight.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/24806559

Microbial monitoring of spacecraft and associated environments

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/14749906

Evidence of pathogenic microbes in the International Space Station drinking water: reason for concern?

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Molecular analyses were carried out on four preflight and six postflight International Space Station (ISS)-associated potable water samples at various stages of purification, storage, and transport, to ascertain their associated microbial diversities and overall microbial burdens. Following DNA extraction, PCR amplification, and molecular cloning procedures, rDNA sequences closely related to pathogenic species of Acidovorax, Afipia, Brevundimonas, Propionibacterium, Serratia, and others were recovered in varying abundance. Retrieval of sequences arising from the iodine (biocide)-reducing Delftia acidovorans in postflight waters is also of concern. Total microbial burdens of ISS potable waters were derived from data generated by an ATP-based enumeration procedure, with results ranging from 0 to 4.9 x 10(4) cells/ml. Regardless of innate biases in sample collection and analysis, such circumstantial evidence for the presence of viable, intact pathogenic cells should not be taken lightly. Implementation of new cultivation approaches and/or viability-based assays are requisite to confirm such an occurrence.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/15880908

Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/24433330
http://onlinelibrary.wiley.com/doi/10.1111/plb.12132/abstract

Bacterial monitoring with adhesive sheet in the international space station-"Kibo", the Japanese experiment module

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Microbiological monitoring is important to assure microbiological safety, especially in long-duration space habitation. We have been continuously monitoring the abundance and diversity of bacteria in the International Space Station (ISS)-"Kibo" module to accumulate knowledge on microbes in the ISS. In this study, we used a new sampling device, a microbe-collecting adhesive sheet developed in our laboratory. This adhesive sheet has high operability, needs no water for sampling, and is easy to transport and store. We first validated the adhesive sheet as a sampling device to be used in a space habitat with regard to the stability of the bacterial number on the sheet during prolonged storage of up to 12 months. Bacterial abundance on the surfaces in Kibo was then determined and was lower than on the surfaces in our laboratory (10(5) cells [cm(2)](-1)), except for the return air grill, and the bacteria detected in Kibo were human skin microflora. From these aspects of microbial abundance and their phylogenetic affiliation, we concluded that Kibo has been microbiologically well maintained; however, microbial abundance may increase with the prolonged stay of astronauts. To ensure crew safety and understand bacterial dynamics in space habitation environments, continuous bacterial monitoring in Kibo is required.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23603802

On-orbit prospective echocardiography on International Space Station crew

by cfynanon 9 June 2015in Biology & Biotechnology No comment

OBJECTIVES: A prospective trial of echocardiography was conducted on six crew members onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what is "space normal" echocardiographic data. METHODS: Each crew member operator (n = 6) had 2-hour preflight training. Baseline echocardiographic data were collected 55-167 days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure–114 days [34–190]). On-orbit ultrasound (US) operators used an e-learning system within 24 hours of these sessions. Expert assistance was provided using US video downlink and two-way voice. Testing was repeated 5-16 days after landing. Separate ANOVA was used on each echocardiographic variable (n = 33). Within each ANOVA, three tests were made: (a) effect of mission phase (preflight, in-flight, postflight); (b) effect of echo technician (two technicians independently analyzed the data); (c) interaction between mission phase and technician. RESULTS: Eleven rejections of the null hypothesis (mission phase or technician or both had no effect) were found that could be considered for possible follow up. Of these, eight rejections were for significant technician effects, not space flight. Three rejections of the null hypothesis (aortic valve time velocity integral, mitral E-wave velocity, and heart rate) were attributable to space flight but determine to not be clinically significant. No rejections were due to the interaction between technician and space flight. CONCLUSION: Thus, we found no consistent clinically significant effects of long-duration space flight on echocardiographic variables of the given group of subjects.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/21535119

The effect of spaceflight on growth of Ulocladium chartarum colonies on the international space station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/23637980

Survival of microorganisms representing the three Domains of life inside the International Space Station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The present work was mainly focused to study the response of representative non pathogenic microorganisms to the environment inside the space vehicle at different mission stages (10, 56, and 226 days) within the frame of the Italian ENEIDE mission, from Feb to Oct 2005. Microorganisms were chosen according to their phylogenetic position and cell structures; they were representatives of the three taxonomic domains and belonged to different ecosystems (food, soil, intestinal tract, plants, deep-sea). They were the followings: Thermococcus guaymasensis (Domain Archaea); Saccharomyces cerevisiae (Domain Eucarya); Escherichia coli, Bacillus subtilis, Lactobacillus acidophilus, Enterococcus faecium, Pseudomonas fluorescens, and Rhizobium tropici (Domain Bacteria). As main environmental parameters we were interested in: a) space radiations; b) microgravity; c) temperature. The response of microorganisms was investigated in terms of survival rates, cell structure modifications, and genomic damages. The survival of cells was affected by both radiation doses and intrinsec cell features. As expected, only samples kept on the ISS for 226 days showed significant levels of mortality. Asfar as regard the effect on cell structures, these samples showed also remarkable morphological changes, particularly for Escherichia coli, Enterococcus faecium, and Saccharomyces cerevisiae. The data collected allowed to get new insights into the biological traits of microorganisms exposed to space environment during the flight on a spacecraft. Moreover, the result obtained may be important for the improvement of human conditions aboard space vehicles (nutraceuticals for astronauts and disinfections of ISS modules) and also for the potential development of closed systems devoted to vegetable productions and organic recycling.

Related URLs:
http://dx.doi.org/10.1007/BF02919471

  • «
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • »

Researcher Interviews

No items found

Projects in Flight

  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
  • Street View Imagery Collect on ISS
  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS