Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Stem cell biology

Could the effect of modeled microgravity on osteogenic differentiation of human mesenchymal stem cells be reversed by regulation of signaling pathways?

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed8&AN=2007294544
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1515%2FBC.2007.082&issn=1431-6730&isbn=&volume=388&issue=7&spage=755&pages=755-763&date=2007&title=Biological+Chemistry&atitle=Could+the+effect+of+modeled+microgravity+on+osteogenic+differentiation+of+human+mesenchymal+stem+cells+be+reversed+by+regulation+of+signaling+pathways%3F&aulast=Zheng&pid=%3Cauthor%3EZheng+Q.%3C%2Fauthor%3E&%3CAN%3E2007294544%3C%2FAN%3E

Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation

by cfynanon 9 June 2015in Biology & Biotechnology No comment

A three-dimensional (3D) clinostat is a device for generating multidirectional G force, resulting in an environment with an average of 10(3) G. Here we report that human mesenchymal stem cells (hMSCs) cultured in a 3D-clinostat (group CL) showed marked proliferation (13-fold in a week) compared with cells cultured under normal conditions of 1 G (group C) (4-fold in a week). Flow cytometry revealed a 6-fold increase in the number of hMSCs double-positive for CD44/CD29 or CD90/CD29 in group CL after 7 days in culture, compared with group C. Telomere length remained the same in cells from both groups during culturing. Group C cells showed increasing expression levels of type II collagen and aggrecan over the culture period, whereas group CL cells showed a decrease to undetectable levels. Pellets of hMSCs from each group were explanted into cartilagedefective mice. The transplants from group CL formed hyaline cartilage after 7 days, whereas the transplants from group C formed only noncartilage tissue containing a small number of cells. These results show that hMSCs cultured in a 3D-clinostat possess the strong proliferative characteristic of stem cells and retain their ability to differentiate into hyaline cartilage after transplantation. On the contrary, cells cultured in a 1-G environment do not maintain these features. Simulated microgravity may thus provide an environment to successfully expand stem cell populations in vitro without culture supplements that can adversely affect stem cell-derived transplantations. This method has significant potential for regenerative medicine and developmental biology.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed7&AN=2007051139
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1089%2Fscd.2006.15.921&issn=1547-3287&isbn=&volume=15&issue=6&spage=921&pages=921-929&date=2006&title=Stem+Cells+and+Development&atitle=Microgravity+potentiates+stem+cell+proliferation+while+sustaining+the+capability+of+differentiation&aulast=Yuge&pid=%3Cauthor%3EYuge+L.%3C%2Fauthor%3E&%3CAN%3E2007051139%3C%2FAN%3E

MECHANOBIOLOGY OF ADULT AND STEM CELLS

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Mechanical forces, including gravity, tension, compression, hydrostatic pressure, and fluid shear stress, play a vital role in human physiology and pathology. They particularly influence extracellular matrix (ECM) gene expression, ECM protein synthesis, and production of inflammatory mediators of many load-sensitive adult cells such as fibroblasts, chondrocytes, smooth muscle cells, and endothelial cells. Furthermore, the mechanical forces generated by cells themselves, known as cell traction forces (CTFs), also influence many biological processes such as wound healing, angiogenesis, and metastasis. Thus, the quantitative characterization of CTFs by qualities such as magnitude and distribution is useful for understanding physiological and pathological events at the tissue and organ levels. Recently, the effects of mechanical loads on embryonic and adult stem cells in terms of self-renewal, differentiation, and matrix protein expression have been investigated. While it seems certain that mechanical loads applied to stem cells regulate their self-renewal and induce controlled cell lineage differentiation, the detailed molecular signaling mechanisms responsible for these mechano-effects remain to be elucidated. Challenges in the fields of both adult- and stem-cell mechanobiology include devising novel experimental and theoretical methodologies to examine mechano-responses more closely to various forms of mechanical forces and mechanotransduction mechanisms of these cells in a more physiologically accurate setting. Such novel methodologies will lead to better understanding of various pathological diseases, their management, and translational applications in the ever expanding field of tissue engineering.

Related URLs:
<Go to ISI>://WOS:000261281700007

Gravitational field-flow fractionation of human hemopoietic stem cells

by cfynanon 9 June 2015in Biology & Biotechnology No comment

New cell sorting methodologies, which are simple, fast, non-invasive, and able to isolate homogeneous cell Populations, are needed for applications ranging from gene expression analysis to cell-based therapy. In particular, in the forefront of stem cell isolation, progenitor cells have to be separated under mild experimental conditions from complex heterogeneous mixtures prepared from human tissues. Most of the methodologies now employed make use of immunological markers. However, it is widely acknowledged that specific markers for pluripotent stein cells are not as yet available, and cell labelling may interfere with the differentiation process. This work presents for the first time gravitational field-flow fractionation (GrFFF), as a tool for tag-less, direct selection of human hematopoietic stein and progenitor cells from cell samples obtained by peripheral blood aphaeresis. These cells are responsible to repopulate the hemopoietic system and they are used in transplantation therapies. Blood aphaeresis sample were injected into a GrFFF system and collected fractions were characterized by flow cytometry for CD34 and CD45 expression, and then tested for viability and multi-differentiation potential. The developed GrFFF method allowed obtaining high enrichment levels of viable, multi-potent hematopoietic stem cells in specific fraction and it showed to fulfil major requirements of analytical performance, such as selectivity and reproducibility of the fractionation process and high sample recovery. (C) 2009 Elsevier B.V. All rights reserved.

Related URLs:
<Go to ISI>://WOS:000272781200008

Complex extracellular matrices promote tissue-specific stem cell differentiation

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Most cells in tissues contact an extracellular matrix on at least one surface. These complex mixtures of interacting proteins provide structural support and biological signals that regulate cell differentiation and may be important for stem cell differentiation. In this study, we have grown a rhesus monkey embryonic stem cell line in the presence of various extracellular matrix components in monolayer, in a NASA-developed rotating wall vessel bioreactor in vitro, and subcutaneously in vivo. We find that individual components of the extracellular matrix, such as laminin-1 or collagen 1, do not influence the growth or morphology of the cells. In contrast, a basement membrane extract, Matrigel, containing multiple extracellular matrix components, induces the cells within 4 days to form immature glandular- and tubular-like structures, many of which contain a lumen with polarized epithelium and microvilli. Such structures were seen in vitro when the cells were grown in the bioreactor and when the cells were injected into mice. These tubular- and glandular-like structures were polarized epithelia based on immunostaining for laminin and cytokeratin. The cell aggregates and tumors also contained additional mixed populations of cells, including mesenchymal cells and neuronal cells, based on immunostaining with vimentin and neuronal markers. An extract of cartilage, containing multiple cartilage matrix components, promoted chondrogenesis in vivo where alcian blue-stained cartilage nodules could be observed. Some of these nodules stained with von Kossa, indicating that they had formed calcified cartilage. We conclude that extracellular matrices can promote the differentiation of embryonic stem cells into differentiated cells and structures that are similar to the tissue from which the matrix is derived. Such preprogramming of cell differentiation with extracellular matrices may be useful in targeting stem cells to repair specific damaged organs.

Related URLs:
<Go to ISI>://WOS:000226989100013

Stem cell bioprocessing: fundamentals and principles

by cfynanon 9 June 2015in Biology & Biotechnology No comment

In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

Related URLs:
<Go to ISI>://WOS:000264357300001

RhoA and cytoskeletal disruption contribute to altered differentiation of human mesenchymal stem cells in modeled microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Spaceflight, aging, and disuse lead to reduced BMD. This study shows that overexpression of constitutively active RhoA restores actin cytoskeletal arrangement, enhances the osteoblastic phenotype, and suppresses the adipocytic phenotype of human mesenchymal stem cells cultured in modeled microgravity. INTRODUCTION: Reduced BMD during spaceflight is partly caused by reduced bone formation. However, mechanisms responsible for this bone loss remain unclear. We have previously shown reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells (hMSCs) cultured in modeled microgravity (MMG). The small GTPase, RhoA, regulates actin stress fiber formation and has been implicated in the lineage commitment of hMSCs. We examined the effects of MMG on actin cytoskeletal organization and RhoA activity and the ability of constitutively active RhoA to reverse these effects. MATERIALS AND METHODS: hMSCs were seeded onto plastic microcarrier beads at a density of 10(6) and allowed to form aggregates in DMEM containing 10% FBS for 7 days. Aggregates were incubated in DMEM containing 2% FBS for 6 h with or without an adenoviral vector containing constitutively active RhoA at a multiplicity of infection (moi) of 500 and allowed to recover in 10% FBS for 24 h. Cells were transferred to the rotary cell culture system to model microgravity or to be maintained at normal gravity for 7 days in DMEM, 10% FBS, 10 nM dexamethasone, 10 mM beta-glycerol phosphate, and 50 muM ascorbic acid 2-phosphate. RESULTS: F-actin stress fibers are disrupted in hMSCs within 3 h of initiation of MMG and are completely absent by 7 days, whereas monomeric G-actin is increased. Because of the association of G-actin with lipid droplets in fat cells, the observed 310% increase in intracellular lipid accumulation in hMSCs cultured in MMG was not unexpected. Consistent with these changes in cellular morphology, 7 days of MMG significantly reduces RhoA activity and subsequent phosphorylation of cofilin by 88+/-2% and 77+/-9%, respectively. Importantly, introduction of an adenoviral construct expressing constitutively active RhoA reverses the elimination of stress fibers, significantly increases osteoblastic gene expression of type I collagen, alkaline phosphatase, and runt-related transcription factor 2, and suppresses adipocytic gene expression of leptin and glucose transporter 4 in hMSCs cultured in MMG. CONCLUSION: Suppression of RhoA activity during MMG represents a novel mechanism for reduced osteoblastogenesis and enhanced adipogenesis of hMSCs.

Related URLs:
<Go to ISI>://WOS:000224326801239

Three-dimensional collagen gel networks for neural stem cell-based neural tissue engineering

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Stem and progenitor cells isolated from the embryonic rat cerebral cortex were immobilized by matrix entrapment in three-dimensional (3D) Type I collagen gels, and cultured in serum-free medium containing basic fibroblast growth factor. The cells trapped within the collagen networks actively proliferated and formed clone-like aggregates. Neurons were the first differentiated cells to appear within the aggregates, followed by generation of astrocytes and oligodendrocytes. In addition, necrotic cores were developed as the aggregate diameter increased and cell viability declined significantly after 3 weeks in culture. To overcome these problems, the cell-collagen constructs were transferred to Rotary Wall Vessel bioreactors for up to 10 weeks. In the rotary culture, the collagen gels compacted 3-4 folds and a long-term growth and differentiation of neural stem and progenitor cells was dynamically maintained. Remarkably, the cell-collagen constructs formed a complex two-layered structure that superficially emulated to a certain extent the cerebral cortex of the embryonic brain in architecture and functionality. The engineered 3D tissue-like constructs displaying characteristic properties of neuronal circuits may have potential use in tissue replacement therapy for injured brain and spinal cord.

Related URLs:
<Go to ISI>://WOS:000231490400034

Three-dimensional bioreactor cultures: A useful dynamic model for the study of cellular interactions

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The ex vivo expansion of hematopoietic cells is a developing area with emphasis on bioreactor systems for amelioration of culture conditions. A rational design of bioreactors, especially those allowing microgravity, could permit the production of stem cells and will offer new approaches for studying the mechanisms of proliferation, differentiation, and signal transduction of cultured cells. The efficacy of two commercially available bioreactors (rotating-vessel miniPERM and static INTEGRA CL 350) to support long-term bone marrow cell cultures (LTBMCC) and three-dimensional growth of Hodgkin's lymphoma HD-MY-Z cells was investigated. In the miniPERM system, the growth of LTBMCC spheroids (containing 30-40 cells) was obtained. An essentially higher content of hematopoietic precursor cells (colony-forming units-granulocyte macrophage) was registered in the rotating-vessel system. In this bioreactor, a growth of large HD-MY-Z spheroids (containing 100-200 cells) was achieved. The composed mathematical models of the physicomechanical behavior of spheroids enabled the evaluation of the revolution frequency increase schedule. The differential equations took into account all inertial effects caused by the production module rotation movement as well as those caused by the relative movement of the spheroid in the fluid. The models aimed at the optimization of the rotation frequency increase schedule for different types of cells to reduce shear stress, augment productivity, and tolerate the growth of large spheroids. The models were numerically tested using MATLAB-SIMULINK software, and the trajectories of prestained HD-MY-Z spheroids were filmed. The coincidence of the theoretical and experimental trajectories was sufficient.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed6&AN=2005126772
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1196%2Fannals.1329.013&issn=0077-8923&isbn=&volume=1030&issue=1&spage=103&pages=103-115&date=2004&title=Annals+of+the+New+York+Academy+of+Sciences&atitle=Three-dimensional+bioreactor+cultures%3A+A+useful+dynamic+model+for+the+study+of+cellular+interactions&aulast=Konstantinov&pid=%3Cauthor%3EKonstantinov+S.M.%3C%2Fauthor%3E&%3CAN%3E2005126772%3C%2FAN%3E

Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers (ALPL, OMD) and master transcription osteogenic factor of MSCs (Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs. (C) 2011 Elsevier Ltd. All rights reserved.

Related URLs:
<Go to ISI>://WOS:000298622700004

  • 1
  • 2
  • »

Researcher Interviews

No items found

Projects in Flight

  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS