Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Cyclone Intensity Measurements from the International Space Station (CIMISS)
        • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
        • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
        • MultiLab: Research Server for the ISS
        • Story Time from Space – 2
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: thermocapillary

Space experiment on the instability of Marangoni convection in large liquid bridge – MEIS-4: effect of Prandtl number

by cfynanon 9 June 2015in Physical Sciences No comment

Microgravity experiments on the thermocapillary convection in liquid bridge, called Marangoni Experiment in Space (MEIS), are carried out in "KIBO" of ISS. Three series of experiments, MEIS-1, 2, and 4, have been conducted so far. This paper reports the results obtained from MEIS-4, in which 20cSt silicone oil ( Pr = 207) is used to generate large liquid bridges. They are suspended between coaxial disks that are 50mm in diameter, with their maximum length equal to 62.5mm. MEIS-4 aims at (1) determining the critical temperature difference for the onset of oscillatory flow; (2) realizing high Marangoni number conditions for high Pr fluid; (3) clarifying the effects of volume ratio, heating rate, hysteresis, and cooled disk temperature; and (4) observing whether the hydrothermal wave with azimuthal mode number m = 0 appears or not. The main results are presented and compared with those obtained in MEIS-1 and 2, which utilized liquid bridges of 5cSt silicone oil ( Pr = 67).

Related URLs:
http://stacks.iop.org/1742-6596/327/i=1/a=012029

3-D Flow Measurement of Oscillatory Thermocapillary Convection in Liquid Bridge in MEIS

by cfynanon 9 June 2015in Physical Sciences No comment

Marangoni Experiment in Space (MEIS) has been conducted in the International Space Station (ISS) in order to clarify the transition processes of thermocapillary convection in liquid bridges. The use of microgravity allows us to generate long liquid bridges, 30mm in diameter and up to 60mm in length. Several flow visualization techniques have been applied to those large liquid bridges. 3-D PTV is used to reveal highly three-dimensional flow patterns that appear after the transition. Three CCD cameras are used to observe the motions of the tracer particles from different view angles through the transparent heated disk made of sapphire. Particle images are recorded in the HDD recording system in ISSand they are downloaded to the ground for data analysis. A conventional 3-D PTV technique and a newly-developed multi-frame particle tracking method are combined to obtain the results that can help better understanding of oscillatory 3-D flow fields in the liquid bridges. It is shown that the flow pattern changes from a 2-D axisymmetric steady flow to an oscillatory 3-D non-axisymmetric flow under the supercritical conditions.

Related URLs:

Hydrothermal Wave Instability in a High-Aspect-Ratio Liquid Bridge of Pr >  200

by cfynanon 9 June 2015in Physical Sciences No comment

The long-duration fluid physics experiments on a thermocapillary-driven flow have been carried out on the Japanese Experiment Module ‘Kibo’ aboard the International Space Station (ISS) since 2008. In these experiments, various aspects of thermocapillary convection in a half-zone (HZ) liquid bridge of high Prandtl number fluid have been examined under the advantages of the long-duration high-quality microgravity environment. In 2010, the authors succeeded to realize nonlinear convective fields in the HZ liquid bridge of rather high aspect ratio. Special attention was paid on to the complex convective fields, especially on the behaviors of the hydrothermal wave (HTW) over the free surface visualized by an infrared camera. In order to evaluate the characteristics of the nonlinear convective behaviors and their transition processes, the authors indicate the images taken by the infrared camera describing the time evolution of HTW, the spatio-temporal diagram, the Fourier analysis, and the pseudo-phase space, reconstructed from the time series of the scalar information of the liquid bridge, that is, surface temperature variation. In this paper, the authors introduce the signature of complex HTW behaviors observed at the long-duration on-orbit experiments, and make comparisons with some previous terrestrial and microgravity experiments.

Related URLs:
http://dx.doi.org/10.1007/s12217-012-9332-7

Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity

by cfynanon 9 June 2015in Physical Sciences No comment

This paper reports experimental results on the instability of thermocapillary convection in long half-zone liquid bridges of high Prandtl number fluids (Pr=67, 112 and 207 for 5, 10 and 20 cSt silicone oils, respectively). The experiments were carried out in microgravity on the International Space Station, which allowed sufficiently long waiting period for the development of instability. Critical temperature differences were measured for liquid bridges of 30 and 50 mm diameters and up to 62.5 mm length. The resultant critical Marangoni numbers (Mac) were obtained for a wide range of aspect ratio (=height/diameter), AR, up to AR=2.0. Linear stability analyses for Pr=67 were also carried out to obtain numerical data for comparison. The present experimental results for Pr=67 indicate 5.0×103<Mac<2.0×104 for large AR (AR>1.25) and they are in good agreement with the present linear stability analysis result. In contrast, the present results are considerably smaller than the previous data (Pr=74) taken in the Space Shuttle experiments. It is shown that this difference is due to the effect of heating rate of the liquid bridge. The data for oscillation frequency and azimuthal mode number are also presented. The non-dimensional oscillation frequencies as well as Mac for Pr=67 have shown a sudden decrease at around AR=1.25, suggesting the bifurcation of neutral stability curves.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0022024815002353

Effect of ambient-gas forced flow on oscillatory thermocapillary convection of half-zone liquid bridge

by cfynanon 9 June 2015in Physical Sciences No comment

The authors focus on thermocapillary-driven flow in a half-zone liquid bridge and its transition from two-dimensional steady flow to three-dimensional oscillatory one under an effect of forced convection in ambient gas region around the liquid bridge. The liquid bridge is settled in a cylindrical 'external shield,' in which upward/downward forced flow of the ambient gas is added. The critical condition of the flow transition in the 2-cSt silicone-oil liquid bridge is examined as functions of the aspect ratio and the volume ratio of the liquid bridge, and averaged velocity of the ambient gas. The authors indicate a significant effect of the external flow around the liquid bridge.

Related URLs:

Researcher Interviews

No items found

Projects in Flight

  • Cyclone Intensity Measurements from the International Space Station (CIMISS)
  • Materials Testing – Earth Abundant Textured Thin Film Photovoltaics
  • GLASS AIS TransponderGlobal AIS on Space Station (GLASS)
  • MultiLab: Research Server for the ISS
  • Story Time from Space – 2
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS