Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • Honeywell/Morehead-DM Payload Processor
        • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
        • ARISS (Amateur Radio from ISS)
        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Up-Regulation

Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/22470446

Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.

Related URLs:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed7&AN=2005320574
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:embase&id=pmid:&id=doi:10.1152%2Fajpcell.00222.2004&issn=0363-6143&isbn=&volume=288&issue=6+57-6&spage=C1211&pages=C1211-C1221&date=2005&title=American+Journal+of+Physiology+-+Cell+Physiology&atitle=Simulated+microgravity+using+the+Random+Positioning+Machine+inhibits+differentiation+and+alters+gene+expression+profiles+of+2T3+preosteoblasts&aulast=Pardo&pid=%3Cauthor%3EPardo+S.J.%3C%2Fauthor%3E&%3CAN%3E2005320574%3C%2FAN%3E

Mechanical load induces upregulation of transcripts for a set of genes implicated in secondary wall formation in the supporting tissue of Arabidopsis thaliana

by cfynanon 9 June 2015in Biology & Biotechnology No comment

We examined the effects of mechanical load on transcripts of a set of cell wall related genes that are implicated in the formation of supporting tissues, by applying a 50 mg strip of aluminum foil to the inflorescence stem of Arabidopsis thaliana, a weight roughly half the fresh weight of the stem. Transcript levels of 12 of the 15 genes examined were increased by load application, as were the levels of some transcription factors that regulate secondary wall formation. These findings support the involvement of a load-sensing system in regulation of supporting tissue formation via transcriptional regulation of cell wall related genes.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/19582540

Effects of Space Flight on the Expression of Liver Proteins in the Mouse

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Raw data derived from mass spectroscopic (MS) analyses of formalin-fixed paraffin-embedded (FFPE) tissue sections of the essential metabolic organ, liver, allocated by the provider (Amgen) from mice subjected to 13 days of microgravity on NASA Flight STS-118 were analyzed by two different search engines, using shotgun proteomics. With the eight statistically significant readouts in hand, Ingenuity Pathway Analysis (IPA) was employed to visualize probable biologic pathway relationships among proteins that might be associated with alterations in liver biochemistry due to space flight. Most noteworthy was the finding of up-regulation of the first urea cycle enzyme carbamoyl- phosphate synthetase, consistent with increased amino acid catabolism resulting from gravitational changes, and/ or other stress associated with missions in space. Down-regulation of fructose-bisphosphate aldolase B, regucalcin, ribonuclease UK114, alpha enolase, glycine N-methyltransferase and S-adenosyl methionine synthetase isoform type-1 was observed. 60 kDa heat shock protein was elevated.

Related URLs:

Differential gene expression patterns in white spruce newly formed tissue on board the International Space Station

by cfynanon 9 June 2015in Biology & Biotechnology No comment

White spruce (Picea glauca [Moench] Voss) seedlings produced by somatic embryogenesis were grown both at the Kennedy Space Center and in weightlessness in the ISS for 30 days. Plants were placed in closed environment incubators (Advanced Biological Research System) under controlled light, temperature, humidity and CO2 conditions. At the end of the experiment, the leading shoot from three plantlets of each of the three lines tested were sampled and pooled in Kennedy Space Center Fixation Tubes (KFT) containing a RNA stabilization solution. Transcript levels were determined by quantitative real-time polymerase chain reaction (RT-qPCR) for 27 candidate genes and three reference genes on the nine seedlings grown in each environment. About two-thirds of the 27 genes produced a larger number of transcript molecules in microgravity conditions. However, only three genes showed significant differences between the two environments, and all of them were up-regulated in microgravity. These genes appear to be involved in important processes such as cell propagation, plant development and response to stress, and their up-regulation has likely contributed to influencing seedling growth patterns.

Related URLs:
http://www.sciencedirect.com/science/article/pii/S0273117713002597

Researcher Interviews

No items found

Projects in Flight

  • Honeywell/Morehead-DM Payload Processor
  • Growth Rate Dispersion as a Predictive Indicator for Biological Crystal Samples
  • ARISS (Amateur Radio from ISS)
  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS