Menu 
  • Home
  • Research on Station
        • Benefits of Research on the ISS
        • Industrial R&D
        • Current Project Pipeline
        • Researcher Interviews
      • Current RFI

        hardware

        RFI-Organs-On-Chips Research

      • Researcher Interviews

        No items found
  • Getting to Space
        • Getting to Space
        • Implementation Partners
        • ISS Hardware
        • Proposal Submission Process
        • Launch Vehicles
        • Support Services
      • Recent Posts

        No items found
      • Projects in Flight

        • ARISS (Amateur Radio from ISS)
        • Project Meteor
        • Development and Deployment of Charge Injection Device Imagers
        • Windows On Earth
        • Street View Imagery Collect on ISS
        View Current ISS Project Pipeline »
  • Research Library
        • ISS National Lab Research Database
        • ISS National Lab Reports
        • Web Resources
        • Research Apps
      • Recently Added Research

        • Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes
        • SUBSONIC MOTION OF A PROJECTILE IN A FLUID COMPLEX PLASMA UNDER MICROGRAVITY CONDITIONS
        • Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading
      • Popular Tags

        • Cell Differentiation
        • Earth Observation
        • Fluid physics
        • Gene Expression
        • Human Research
        • Material science
        • Mice
        • Microbiology
        • Simulated microgravity
        • Technology demonstration
  • Make Contact
  • Home
  • Research on Station
    • Benefits of Microgravity
    • Industrial R&D
    • Current Project Pipeline
    • Research Opportunities
    • Researcher Interviews
  • Facilities & Hardware
    • ISS Hardware
    • Implementation Partners
  • Getting to Space
    • Getting to Space
    • Proposal Submission Process
    • Launch Vehicles
  • Research Library
    • Research Apps
    • Researcher Guides
    • Resources
    • Publication Database

« Go Back

Research Containing: Virulence

Interaction of Yersinia pestis Virulence Factors with IL-1R/TLR Recognition System

by cfynanon 22 August 2016in Biology & Biotechnology No comment

The virulence antigen (V-antigen, LcrV) of Yersinia pestis, the causative agent of bubonic plague, is an established protective antigen known to regulate, target, and mediate type III translocation of cytotoxic yersiniae outer proteins termed Yops; LcrV also prompts TLR2-dependent upregulation of anti-inflammatory IL-10. In this study, we determined the parameters of specific interaction of LcrV with TLR2 expressed on human transfected HEK293 cells (TLR2+/CD14-), VTEC2.HS cells (TLR2+/CD14-), primary monocytes (TLR2+/CD14+), and THP-1 cells (TLR2+/CD14+). The IRRL314-317 motif of the extracellular domain of human and mouse TLR2 accounted for high-affinity binding of LcrV. The CD14 co-receptor did not influence this interaction. LcrV did not bind to human U937 (TLR2-/CD14-) and alveolar macrophages (TLR2-/CD14+) in the absence of receptor-bound human IFN-γ or a synthetic C-terminal fragment (hIFN-γ132-143). The latter, but not mouse IFN-γ (or synthetic control peptides), shared a GRRA138-141 site necessary for high-affinity specific binding. LcrV of Y. pestis shares the N-terminal LEEL32-35 binding site of Yersinia enterocolitica and also has an exposed internal DEEI203-206 binding site. Comparison of binding constants and consideration of steric restrictions indicate that binding is not cooperative and only the internal site binds LcrV to target cells. Both the LEEL32-35 and DEEI203-206 binding sites are removed by five amino acids from DKN residues associated with biological activity of bound LcrV. LcrV of Y. pestis promoted both TLR2/CD14-dependent and TLR2/CD14-independent amplification of IL-10 and concomitant downregulation of TNF-α in human target cells. The ability of LcrV to utilize human IFN-γ (a major inflammatory effector of innate immunity) to minimize inflammation is insidious and may account in part for the severe symptoms of plague in man.

Related URLs:
http://link.springer.com/chapter/10.1007%2F978-1-59745-569-5_23

Attachment of LcrV from Yersinia pestis at dual binding sites to human TLR-2 and human IFN-gamma receptor.

by cfynanon 22 August 2016in Biology & Biotechnology No comment

The virulence antigen (V-antigen, LcrV) of Yersinia pestis, the causative agent of bubonic plague, is an established protective antigen known to regulate, target, and mediate type III translocation of cytotoxic yersiniae outer proteins termed Yops; LcrV also prompts TLR2-dependent upregulation of anti-inflammatory IL-10. In this study, we determined the parameters of specific interaction of LcrV with TLR2 expressed on human transfected HEK293 cells (TLR2+/CD14-), VTEC2.HS cells (TLR2+/CD14-), primary monocytes (TLR2+/CD14+), and THP-1 cells (TLR2+/CD14+). The IRRL314-317 motif of the extracellular domain of human and mouse TLR2 accounted for high-affinity binding of LcrV. The CD14 co-receptor did not influence this interaction. LcrV did not bind to human U937 (TLR2-/CD14-) and alveolar macrophages (TLR2-/CD14+) in the absence of receptor-bound human IFN-gamma or a synthetic C-terminal fragment (hIFN-gamma132-143). The latter, but not mouse IFN-gamma (or synthetic control peptides), shared a GRRA138-141 site necessary for high-affinity specific binding. LcrV of Y. pestis shares the N-terminal LEEL32-35 binding site of Yersinia enterocolitica and also has an exposed internal DEEI203-206 binding site. Comparison of binding constants and consideration of steric restrictions indicate that binding is not cooperative and only the internal site binds LcrV to target cells. Both the LEEL32-35 and DEEI203-206 binding sites are removed by five amino acids from DKN residues associated with biological activity of bound LcrV. LcrV of Y. pestis promoted both TLR2/CD14-dependent and TLR2/CD14-independent amplification of IL-10 and concomitant downregulation of TNF-alpha in human target cells. The ability of LcrV to utilize human IFN-gamma (a major inflammatory effector of innate immunity) to minimize inflammation is insidious and may account in part for the severe symptoms of plague in man.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17441749

Impact of space flight on bacterial virulence and antibiotic susceptibility

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/26251622

The V-Antigen of Yersinia Forms a Distinct Structure at the Tip of Injectisome Needles

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Many pathogenic bacteria use injectisomes to deliver effector proteins into host cells through type III secretion. Injectisomes consist of a basal body embedded in the bacterial membranes and a needle. In Yersinia, translocation of effectors requires the YopB and YopD proteins, which form a pore in the target cell membrane, and the LcrV protein, which assists the assembly of the pore. Here we report that LcrV forms a distinct structure at the tip of the needle, the tip complex. This unique localization of LcrV may explain its crucial role in the translocation process and its efficacy as the main protective antigen against plague.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/16254184

Growth of 48 built environment bacterial isolates on board the International Space Station (ISS)

by cfynanon 22 August 2016in Biology & Biotechnology No comment

Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/27019789

The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague

by cfynanon 22 August 2016in Biology & Biotechnology No comment

The LcrV protein (V-antigen) is a multifunctional virulence factor in Yersinia pestis, the causative agent of plague. LcrV regulates the translocation of cytotoxic effector proteins from the bacterium into the cytosol of mammalian cells via a type III secretion system, possesses antihost activities of its own, and is also an active and passive mediator of resistance to disease. Although a crystal structure of this protein has been actively sought for better understanding of its role in pathogenesis, the wild-type LcrV was found to be recalcitrant to crystallization. We employed a surface entropy reduction mutagenesis strategy to obtain crystals of LcrV that diffract to 2.2 A and determined its structure. The refined model reveals a dumbbell-like molecule with a novel fold that includes an unexpected coiled-coil motif, and provides a detailed three-dimensional roadmap for exploring structure-function relationships in this essential virulence determinant.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/14962390

Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

by cfynanon 9 June 2015in Biology & Biotechnology No comment

A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17901201

Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis

by cfynanon 9 June 2015in Biology & Biotechnology No comment

For some microbial species, such as Bacillus anthracis, the etiologic agent of the disease anthrax, correct detection and identification by molecular methods can be problematic. The detection of virulent B. anthracis is challenging due to multiple virulence markers that need to be present in order for B. anthracis to be virulent and its close relationship to Bacillus cereus and other members of the B. cereus group. This is especially the case in environments where build-up of Bacillus spores can occur and several representatives of the B. cereus group may be present, which increases the chance for false-positives. In this study we show the presence of B. anthracis-like bacteria and other members of the B. cereus group in a microbial community within the human environment of the International Space Station and their preliminary identification by using conventional culturing as well as molecular techniques including 16S rDNA sequencing, PCR and real-time PCR. Our study shows that when monitoring the microbial hygiene in a given human environment, health risk assessment is troublesome in the case of virulent B. anthracis, especially if this should be done with rapid, easy to apply and on-site molecular methods.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/24945323

The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium

by cfynanon 9 June 2015in Biology & Biotechnology No comment

The RNA chaperone, Hfq, plays a diverse role in bacterial physiology beyond its original role as a host factor required for replication of Qbeta RNA bacteriophage. In this study, we show that Hfq is involved in the expression and secretion of virulence factors in the facultative intracellular pathogen, Salmonella typhimurium. A Salmonella hfq deletion strain is highly attenuated in mice after both oral and intraperitoneal infection, and shows a severe defect in invasion of epithelial cells and a growth defect in both epithelial cells and macrophages in vitro. Surprisingly, we find that these phenotypes are largely independent of the previously reported requirement of Hfq for expression of the stationary phase sigma factor, RpoS. Our results implicate Hfq as a key regulator of multiple aspects of virulence including regulation of motility and outer membrane protein (OmpD) expression in addition to invasion and intracellular growth. These pleiotropic effects are suggested to involve a network of regulatory small non-coding RNAs, placing Hfq at the centre of post-transcriptional regulation of virulence gene expression in Salmonella. In addition, the hfq mutation appears to cause a chronic activation of the RpoE-mediated envelope stress response which is likely due to a misregulation of membrane protein expression.

Related URLs:
http://www.ncbi.nlm.nih.gov/pubmed/17163975

Discovery of Spaceflight-Related virulence Mechanisms in Salmonella and Other Microbial Pathogens: Novel Approaches to Commercial Vaccine Development

by cfynanon 9 June 2015in Biology & Biotechnology No comment

Understanding infectious disease risks during spaceflight is critical to provide safe passage for human space exploration and holds potential for innovations in infectious disease control for the general public. The key to this research is the novel way that cells adapt and respond to spaceflight, as they exhibit important biological characteristics that are directly relevant to human health and disease including changes in immune function, cellular stress responses, and infectious disease potential that are not observed using traditional experimental approaches. We discovered that spaceflight uniquely alters the virulence and gene expression of the bacterial pathogen Salmonella typhimurium, and that the conserved, small regulatory RNA-binding protein, Hfq, plays a central role in regulating the Salmonella spaceflight response. We have subsequently shown that spaceflight culture also alters the Hfq regulon in other bacterial pathogens. As Hfq regulation is often associated with ionic salt concentrations, we discovered that altering the concentration of certain ionic salts, like phosphates, in the growth media prevents the increased disease causing potential of Salmonella during spaceflight. Collectively, our results suggest that RNA binding regulatory proteins and their small RNA binding counterparts may be key to a conserved, common cellular spaceflight response mechanism in bacterial cells that can be manipulated by environmental salt/ion levels. The implications of our findings would affect NASA’s approach to infectious disease risk assessment, development of biological processing systems for exploration, and other mission-related functions. Knowledge gained from this work will broaden our knowledge of microbial cells for both spaceflight and Earth based applications and holds translational potential for the development of vaccines and therapeutics for the general public.

Related URLs:

  • 1
  • 2
  • »

Researcher Interviews

No items found

Projects in Flight

  • ARISS (Amateur Radio from ISS)
  • Project Meteor
  • Development and Deployment of Charge Injection Device Imagers
  • Windows On Earth
  • Street View Imagery Collect on ISS
View Current ISS Project Pipeline »

CASIS on Twitter

Tweets by ISS_CASIS